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Abstract. The Dyson relations between renormalized and bare photon and electron propagators Z3D̄(q) =
D(q) and Z2S̄(q) = S(q) are expanded over planar binary trees. This yields explicit recursive relations for
the terms of the expansions. When all the trees corresponding to a given power of the electron charge are
summed, recursive relations are obtained for the finite coefficients of the renormalized photon and electron
propagators. These relations significantly decrease the number of integrals to carry out, as compared to
the standard Feynman diagram technique. In the case of massless quantum electrodynamics (QED), the
relation between renormalized and bare coefficients of the perturbative expansion is given in terms of a
Hopf algebra structure.

1 Introduction

Wightman made the comment [1] “Renormalization The-
ory has a history of egregious errors by distinguished sa-
vants. It has a justified reputation of perversity; a method
that works up to 13th order in the perturbation series
fails in the 14th order.” Although renormalization theory
is considered to be well understood, it is still a difficult
subject plagued with considerable combinatorial complex-
ity.

However, renormalization is not just a recipe to ex-
tract a finite part from an infinite integral. It was a guide
to elaborate the theories of weak and strong interactions.
It can be used to build consistent Lagrangians: the mini-
mal coupling Lagrangian of scalar electrodynamics misses
a quartic term which is reintroduced by renormalization
[2]. Renormalization is also linked to the irreversibility of
the macroscopic universe [3]. Other arguments in favor
of renormalization are provided by Jackiw [4]. Although
a rigorous proof of renormalization was given in the six-
ties, the mathematical structure underlying renormaliza-
tion was discovered only in 1998 by Kreimer [5,6], and
later developed by Kreimer and Connes [7–10].

When practitoners of QED calculate multiloop contri-
butions to renormalized propagators, they are often struck
by the many cancellations occurring in the calculation.
These cancellations are partly due to the existence of the
Ward identity Z1 = Z2, which provides a relation between
self-energy and vertex counterterms. In this paper, we de-
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rive recursive equations for the renormalized electron and
photon propagators that take full account of Z1 = Z2.

In Schwinger’s approach, the electron and photon prop-
agators are given as solutions of equations involving func-
tional derivatives. In [11], it was shown that the Schwinger
equations for QED can be solved elegantly using series
indexed by planar binary trees: the electron and photon
propagators were written as

S(q) =
∑
t

e
2|t|
0 ϕ0(t; q),

Dλµ(q) =
∑
t

e
2|t|
0 ϕ0

λµ(t; q),

where t runs over the set of planar binary trees, and |t| is
the number of internal vertices of t. Recurrence relations
were obtained to calculate ϕ(t) and ϕλµ(t).

Schwinger also gave an equation for the renormalized
propagators S̄(q) and D̄λµ(q). If we enforce the relation
Z1 = Z2, the Schwinger equations for the renormalized
propagators contain only the renormalization factors Z2
and Z3, and the mass shift δm. The renormalized propa-
gators are expanded over trees:

S̄(q) =
∑
t

e2|t|ϕ̄0(t; q),

D̄λµ(q) =
∑
t

e2|t|ϕ̄0
λµ(t; q),

and the Schwinger equation is solved, giving us recurrence
relations for ϕ̄(t) and ϕ̄λµ(t). However, enforcing Z2 = Z1
is incompatible with renormalization at the tree level, in
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the sense that the ϕ̄(t) given by the recurrence relations
are not finite. To obtain finite quantities, we make two
partial sums. In the first case, we sum over all terms of a
given order; in the second, we sum over all terms with a
given number of electron and photon loops. This last case
generalizes quenched QED (i.e. zero electron loop). Recur-
rence relations will be given for these terms. In the case of
massless QED, the recursive relations will be transformed
into the definition of the Hopf algebra of renormalization.

The plan of the paper is the following. We first intro-
duce the problem of renormalization from different points
of view; then we give the essential equations for the renor-
malization of QED. The tree-expansion method is pre-
sented in detail and used to derive the recursive equa-
tions for the renormalized electron and photon propaga-
tors. These relations will be summed over all trees of a
given order, and over all trees with a given number of
electron and photon loops. These sums will be shown to
be finite. Finally the Hopf algebra of massless QED is de-
scribed. A first appendix gives some proofs, a second one
gives the relation between renormalized and bare propa-
gators for massless QED. A last appendix expresses the
smallest planar binary trees as a sum of Feynman dia-
grams.

In this paper, we consider only the renormalization
of ultraviolet divergences, and we assume that infrared
divergences are regularized, for instance by introducing a
photon mass.

2 Renormalization

An enormous literature has been devoted to the renor-
malization theory. The reader is referred to [12–14] and
references therein for the concepts and history of renor-
malization. Here we shall concentrate on its technical as-
pects. Renormalization theory can be considered from at
least three different points of view: the Dyson method, the
extension of distributions and the product of distributions.

2.1 The Dyson point of view

According to the first point of view, perturbative quantum
field theory yields divergent integrals in Fourier space, and
renormalization is a technique intended to extract a finite
part from them. A picture of how this could be achieved
was first given by Dyson in 1949 [15] and Salam [16,17]
in 1951. Explicit formulas were proposed by Bogoliubov
and Parasiuk [18] and finally proved by Hepp [19,20]. This
method is general, in the sense that it can be used for any
quantum field theory, whether renormalizable or not.

To understand this renormalization process, it is very
useful to treat a one-dimensional toy model of overlapping
divergences proposed by Kreimer [5,6]. Let

f(x, y, c) =
x

x+ c
1

x+ y
y

y + c
.

We want to give a meaning to the integral

I(c) =
∫ ∞

1
dx
∫ ∞

1
dyf(x, y, c).

Power counting is applied as follows. If we substitute
λx for x and take the limit λ → ∞, we see that I(c)
varies as λ0 = 1, and we say that the integral is loga-
rithmically divergent for x. Similarly, it is logarithmically
divergent for y. If both x and y are multiplied by λ, the
integral I(c) varies as λ1 in the limit λ → ∞. Then, I(c)
is linearly divergent for the variables x, y. In the Dyson–
Salam renormalization scheme, we first fix y in f(x, y, c),
we keep the part of f(x, y, c) which does not depend on
x (i.e. y/(y + c)) and we take the value of the rest (i.e.
x/((x + c)(x + y))) at c = 0 and y = 0 (i.e. 1/x). The
product of these two factors (i.e. y/(x(y + c))) is called
a counterterm and is subtracted from f(x, y, c) to remove
the logarithmic divergence for x. This procedure produces

f(x, y, c) − y

x(y + c)
= − y

y + c
xy + xc+ yc
x(x+ c)(x+ y)

,

which is now convergent for the integral over x (it varies as
λ−1 by power counting). If we make the same subtraction
while fixing the variable x we obtain, subtracting both
counterterms,

g(x, y, c) = f(x, y, c) − y

x(y + c)
− x

y(x+ c)

= −x
2y2 + xy3 + yx3 + cy3 + cx3 + cyx2 + cxy2

x(x+ c)(x+ y)(y + c)y
.

This result is disappointing, because g(x, y, c) is now lin-
early divergent if x is multiplied by λ, if y is multiplied by
λ and if x and y are both multiplied by λ. In other words,
g(x, y, c) is still more divergent than f(x, y, c). The mira-
cle happens when we subtract the global linear divergence
of g(x, y, c). The final term,

f̄(x, y, c) = g(x, y, c) − g(x, y, 0) − c∂g(x, y, 0)
∂c

= −c2 xy + cx+ cy
x(x+ c)(x+ y)(y + c)y

,

is now absolutely convergent for x, for y and for x, y.

2.2 The extension of distributions

From a mathematical point of view, renormalization the-
ory can be considered as a method to extend a distribution
to a larger domain.

The standard example is 1/x. If φ(x) is a test function
that vanishes at 0, then∫ ∞

−∞
dx
φ(x)
x

exists. The question is how it is possible to extend this
distribution to general test functions. The existence of this
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extension is ensured by the Hahn–Banach theorem [21]
and a formula for such extensions is∫

|x|<a

dx
φ(x) − φ(0)

x
+
∫

|x|>a

dx
φ(x)
x
,

for any positive parameter a. Hence various extensions are
possible that are parametrized by a. Notice that the dif-
ference between two such integrals for a and a′ is (log a′ −
log a)φ(0). Therefore, as distributions, two extensions of
1/x differ by logΛδ(x) for some Λ. The peculiarity of
quantum field theory is that Λ can be determined by ex-
periment.

The mathematical conditions for the existence of such
an extension were investigated by Malgrange [22], Estrada
[23] and Brunetti and Fredenhagen [35].

This extension method can be used to calculate, in
some cases, the product of two distributions. For instance,
by Fourier transform, it can be shown that δ(x−a)δ(x) =
δ(a), for a �= 0. However, if a = 0, the Fourier transform
of the product diverges. This is exactly the same type of
divergence as is met in the usual presentation of renor-
malization. The product of distributions δ(x)2 is zero for
x �= 0, thus a possible extension is δ(x)2 = Cδ(x), where
C is a constant determined by experiment.

In quantum field theory, causality, Poincaré invariance
and unitarity were used by Stueckelberg and collabora-
tors to provide a prescription to carry out this extension
[24–27]. Bogoliubov and collaborators systematized this
construction [18,28–30], which took its final form with
Epstein and Glaser [31]. Nowadays, the extension method
is called the “causal approach”, and the case of QED is
treated in detail in [32,33].

A (correct) proof of the validity of Bogoliubov’s meth-
od was finally given by Hepp [19] in 1966 and by Zimmer-
mann [34] in 1969.

Recently, the causal approach has been reinterpreted
in terms of microlocal analysis [35]. This enabled these au-
thors to provide the first renormalization of quantum field
theory in curved spacetime. A pedagogical presentation of
the causal approach can be found in [36].

From the causal point of view, the Feynman free propa-
gators mix the plus and minus propagators in a too straight-
forward way. To circumvent the problem of divergence,
each Feynman propagator must be split into its plus and
minus parts. A similar point of view is used in Steinmann’s
axiomatic field theory of QED, recently reviewed in [37].

2.3 The product of distributions

The most radical approach to renormalization would be
to define a product of distributions, which could lead to
a nonlinear theory of distributions. Schwartz has shown
that this is impossible in general [38], but the notion of
a distribution can be extended to a more general kind of
functions which can be multiplied. For a comparison with
experimental results, we must project these new functions
back onto standard distributions.

This approach was investigated by various authors [39–
47]. The main drawback of these new generalized functions

is that they lead to very heavy calculations. For instance,
it is not difficult to show that [48](

1
x

)2

=
1
x2 + π2δ(x)2, (1)

but the computation of (1/x)3 is already intractable. To
understand the striking identity (1), we start from the
continuous function f(x) = x log |x| − x, which defines a
distribution by

∫
dxf(x)φ(x) for any test function φ(x).

Then the distribution 1/x is defined as d2f/dx2, the dis-
tribution 1/x2 is −d3f/dx3, and (1/x)2 is the product of
the distribution 1/x with itself.

In spite of their complexity, these new generalized func-
tions have found some applications in physics [49–52]. For
instance, a definite value could be given to the curvature
of a cone at its apex [50].

Notice that, as for the extension of distributions, mi-
crolocal analysis is of growing importance in the study of
the new generalized functions [53].

3 Renormalization of QED

QED was renormalized to all orders by Dyson [15]. We
can now interpret his prescriptions in the framework of the
Schwinger equations. It is standard to define free, bare and
renormalized propagators. The free electron Green func-
tion S0(q) is the Green function for an electron without
electromagnetic interaction. The bare electron Green func-
tion S(q) is the Green function for an electron with elec-
tromagnetic interaction, but without renormalization. In
the perturbation expansion of S(q), all terms (except the
first one) are infinite. The renormalized Green function
S̄(q) is the Green function for an electron with electro-
magnetic interaction, after renormalization. Similarly we
define D0(q), D(q) and D̄(q) as the free, bare and renor-
malized photon Green functions.1

3.1 The free propagators

The free electron propagator is

S0(q) = (γ · q −m+ iε)−1
.

The scalar product is defined by

γ · q =
∑
λµ

γλgλµq
µ,

where the pseudo-metric tensor gλµ is

g =




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


 .

1 Strictly speaking, a propagator is a one-particle Green
function, but in this paper propagator and Green function will
be used indiscriminately. For simplicity, fermions (electrons +
positrons) are called electrons.
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All the electron propagators S0(q), S(q) and S̄(q) are
4×4 complex matrix functions of the 4-vector q. If I is the
2×2 identity matrix and σx, σy, σz are the Pauli matrices

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
,

the Dirac matrices can be written γ0 =

(
I 0
0 −I

)
,

γ1 =

(
0 σx

−σx 0

)
, γ2 =

(
0 σy

−σy 0

)
,

γ3 =

(
0 σz

−σz 0

)
.

The free photon propagator D0(q) is a complex 4 × 4
matrix with components D0

µν(q) defined by

D0
µν(q) = − gµν

q2 + iε
+ (1 − 1/ξ)

qµqν
(q2 + iε)2

.

The term 1/ξ was introduced by Heisenberg to makeD0(q)
non-singular. The Green function used in classical electro-
dynamics is D0T(q) defined as

D0T
µν (q) = − gµν

q2 + iε
+

qµqν
(q2 + iε)2

.

A tensor Tµν(q) such that qµTµν(q) = 0 is called trans-
verse. It can be checked that D0T

µν (q) is transverse, and
non-singular in the space of transverse tensors.

Up to an eventual factor i, the expressions for the free
Green functions S0(q) and D0

µν(q) are standard (see, e.g.
[2], p. 93 and p. 36; [54], p. 184 and p. 190; [55], p. 218
and p. 253, for a complete description and a derivation).

3.2 The bare propagators

The Schwinger equations for bare electron and photon
propagators were given by Bogoliubov and Shirkov [30]
and transformed into the following integral equations in
[11]:

S(q) = S0(q)

+ie20S
0(q)

∫
d4p

(2π)4
γλDλλ′(p)

δS(q − p)
e0δA0

λ′(p)
, (2)

Dµν(q) = D0
µν(q)

−ie20D
0
µλ(q)

∫
d4p

(2π)4
tr
[
γλ

δS(p)
e0δA0

λ′(−q)
]
Dλ′ν(q), (3)

where A0
λ(p) is an external electromagnetic field and δS(q)

δA0
λ(p)

is the functional derivative evaluated at A0
λ(p) = 0.

The longitudinal part of the bare photon Green func-
tion is not modified by the interaction [2], and Dλµ(q) can

be written as the sum of its transverse and its longitudinal
parts:

Dλµ(q) = DT
λµ(q) − 1

ξ

qλqµ
(q2 + iε)2

, (4)

where DT
λµ(q) is transverse. In (3), the photon propagator

Dλ′ν(q) is not integrated – it just multiplies the integral.
This is not very convenient and it will be useful to intro-
duce the bare vacuum polarization, denoted Πλµ(q) and
defined by

[D−1]λµ(q) = (qλqµ − q2gλµ) − ξqλqµ −Πλµ(q).

(5)

The vacuum polarization tensor Πλµ(q) is transverse [2].
If we multiply (5) by (4), we obtain

g ν
λ − qλq

ν

q2
=
(
(qλqµ − q2gλµ) −Πλµ(q)

)
DTµν(q).

(6)

The left-hand side of (6) is the projector onto the trans-
verse tensors.

We show in Sect. A.2 that

Πλµ(q) = −ie20

∫
d4p

(2π)4
tr
[
γλ

δS(p)
e0δA0

µ(−q)
]
. (7)

3.3 Renormalized propagators

To obtain the Schwinger equations for the renormalized
propagators, it is best is to start from the renormalized
Lagrangian, and to follow the steps given by Bogoliubov
and Shirkov [30], Itzykson and Zuber [2] or Rochev [56].
However, to give an idea of the result, we introduce some
of Dyson’s recipes.

The longitudinal part of the photon Green function is
not modified by renormalization [2], and the renormalized
photon propagator can be decomposed as

D̄λµ(q) = D̄T
λµ(q) − 1

ξ

qλqµ
(q2 + iε)2

, (8)

where D̄T
λµ(q) is transverse.

Then, we introduce Dyson’s relation between renor-
malized and bare Green functions ([2], p. 414):

S̄(q)Z2 = S(q), (9)

Z3D̄
T
µν(q) = DT

µν(q), (10)

Z3e
2
0 = e2, (11)

m0 = m+ δm, (12)

where Z2 and Z3 are (infinite) scalars independent of q,
and e is the renormalized charge. Equation (11) was con-
jectured by Dyson [15] and proved by Ward [57]. Finally,
the external field A0

λ is renormalized as Aλ, so that

e0A
0
λ = eAλ. (13)
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To introduce the mass renormalization, we must start
from the differential form of the Schwinger equation for
the bare electron propagator, where we reintroduce the
external field, for later convenience,[

iγ · ∂ −m0 − e0γ ·A0(x)
]
S(x, y;A0) = δ(x− y)

+ie20

∫
d4zγµDµρ(x, z;A0)

δS(x, y;A0)
e0δA0

ρ(z)
. (14)

Dyson showed that the relations (9)–(13), are valid in
the presence of an external field. We use them in (14) to
obtain

[iγ · ∂ −m] S̄(x, y;A)Z2 = δ(x− y) + δmS̄(x, y;A)Z2

+ie2
∫
d4zγµD̄µρ(x, z;A)

δS̄(x, y;A)
eδAρ(z)

Z2. (15)

In (15), we have changed the gauge parameter ξ0 of Dµρ

(x, z;A0) into ξ = Z3ξ0 (see [2], p. 414).
If we multiply (15) by

S0(z, y;A) = [iγ · ∂ −m− eγ ·A]−1 (16)

and integrate over x we obtain the integral Schwinger
equation for the renormalized electron propagator,

S̄(x, y;A)Z2 = S0(x, y;A)

+ie2
∫

d4zd4z′S0(x, z;A)γλD̄λλ′(z, z′;A)

×δS̄(z, y;A)
eδAλ′(z′)

Z2

+ δm

∫
d4zS0(x, z;A)S̄(z, y;A)Z2. (17)

In (17), we put A = 0 and we Fourier transform to find

S̄(q)Z2 = S0(q) + δmS0(q)S̄(q)Z2

+ie2S0(q)
∫

d4p

(2π)4
γλD̄λλ′(p)

δS̄(q − p)
eδAλ′(p)

Z2.

(18)

This equation was given by Bogoliubov and Shirkov
[30], as well as by Itzykson and Zuber ([2], p.481), ex-
cept for the mass counterterm δm which was apparently
overlooked by these authors. A complete derivation can
be found in [56] (notice that there δm is our Z2δm).

To obtain a convenient Schwinger equation for the
renormalized photon propagator, we must introduce the
renormalized vacuum polarization Π̄λµ(q), defined by

[D̄−1]λµ(q) = (qλqµ − q2gλµ) − ξqλqµ − Π̄λµ(q).

(19)

It may be useful to compare these definitions to those
of Itzykson and Zuber [2]: D̄µν = −iḠµν , Π̄µν = iω̄µν .

If we multiply (19) by (8), we obtain

g ν
λ − qλq

ν

q2
=
(
(qλqµ − q2gλµ) − Π̄λµ(q)

)
D̄Tµν(q).

(20)

If we compare (6) and (20), and use (10), we find

qλqµ − q2gλµ − Π̄λµ(q) = Z3(qλqµ − q2gλµ
− Πλµ(q)). (21)

Therefore, using (9) and (13)

Πλµ(q) = −ie20Z2

∫
d4p

(2π)4
tr
[
γλ

δS̄(p)
eδAµ(−q)

]
.

Introducing this equation into (21), and using (11) we ob-
tain

Π̄λµ(q) = (1 − Z3)(qλqµ − q2gλµ)

− Z2ie2
∫

d4p

(2π)4
tr
[
γλ

δS̄(p)
eδAµ(−q)

]
. (22)

Equations (18) and (22) will be the bases of recur-
sive expressions for the renormalized electron and photon
propagators.

4 Tree expansion of propagators

For the convenience of the reader, and because the nota-
tion of [11] has been modified2, we recall the description
of photon and electron propagators in terms of planar bi-
nary trees. But first, we give a short introduction to planar
binary trees.

4.1 Planar binary trees

A planar binary tree is a tree with a designated vertex
called the root. To follow the notation of Loday and Ronco
[58], we write the root vertex as . The other vertices are
not explicitly drawn, but they are at the ends of each edge,
which are \ or /. The trees are binary because each vertex
has either zero or two children. They are planar because

is different from . The planar binary trees have an
odd number of vertices and for each tree t we define |t| as
the integer such that t has 2|t|+1 vertices. In other words,
|t| is the number of internal vertices. We call Yn the set of
planar binary trees t with such that |t| = n.

The planar binary trees with up to 7 vertices are

Y0 = { },
Y1 = { },
Y2 = { , },
Y3 = { , , , , }.

2 There are no longer trees with black or white roots. The
color of the root is now indicated by the function ϕ itself. ϕ(t; q)
corresponds to a tree with a black root, ϕµν(t; q) to a tree with
a white root. This notation is more compact than the one of
[11].
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We denote by Y the set of all planar binary trees

Y =
∞⋃

n=0

Yn.

Finally we consider the operation of grafting two trees,
∨ : Yp ×Yq −→ Yp+q+1, by which the roots of two trees t1
and t2 are joined into a new vertex that becomes the root
of the tree t = t1 ∨ t2, cf. [58]. For instance

∨ = . (23)

It is clear that any tree t, except the 0-tree , is the grafting
of two uniquely determined trees tl and tr with orders
|tl|, |tr| ≤ |t| − 1.

4.2 Trees and propagators

The main trick of [11] was to write each propagator as a
sum indexed by planar binary trees.

The bare electron Green function in Fourier space,
S(q) is written as a sum over planar binary trees t

S(q) =
∑
t

e
2|t|
0 ϕ0(t; q). (24)

Here e0 is the bare electron charge (i.e. the electron charge
before renormalization). The fact that the expansion is
over e20 (and not e0) was justified in [11]. Similarly, the
renormalized electron Green function is expanded over
planar binary trees

S̄(q) =
∑
t

e2|t|ϕ̄0(t; q). (25)

In (25) e is the renormalized (finite) electron charge.
A word of caution is required here. The Schwinger

equations (18) and (22), where the Ward identity Z1 = Z2
was used to eliminate Z1 (see [2]), will be used to de-
termine a recursive definition of ϕ̄0(t; q). This definition
does not ensure that ϕ̄0(t; q) is finite. As explained below,
ϕ̄0(t; q) are sometimes divergent. Therefore, certain sums
over t are required to obtain finite quantities. The expan-
sion over trees is useful because the recursive relations for
these sums are difficult to obtain directly, whereas they
are immediate consequences of the recursive expressions
for ϕ̄0(t; q).

The bare and renormalized photon Green functions are
written as

Dµν(q) =
∑
t

e
2|t|
0 ϕ0

µν(t; q),

D̄µν(q) =
∑
t

e2|t|ϕ̄0
µν(t; q). (26)

For the renormalization of the photon Green func-
tion and the vacuum polarization, it will be necessary
to distinguish the photon Green function Dµν(q) and the
transverse photon Green function DT

µν(q). Since all terms

ϕ0
µν(t; q) and ϕ̄0

µν(t; q) are transverse for t �= , the trans-
verse renormalized propagator is

D̄T
µν(q) = ϕT

µν( ; q) +
∑
|t|>0

e2|t|ϕ̄0
µν(t; q),

where ϕT
µν( ; q) = D0T

µν (q).
The bare and renormalized vacuum polarization are

expanded similarly:

Πλµ(q) =
∑
|t|>0

e
2|t|
0 ψ0

λµ(t; q), (27)

Π̄λµ(q) =
∑
|t|>0

e2|t|ψ̄0
λµ(t; q). (28)

For later convenience, we finally define

ψ0
λµ( ; q) = qλqµ − q2gλµ,

so that

[D0−1
]λµ(q) = (qλqµ − q2gλµ) − ξqλqµ (29)

= ψ0
λµ( ; q) − ξqλqµ. (30)

A few identities will be useful in the sequel:

D0
λµ(q)(q

µqν − q2gµν) = −q2D0T
λν (q),

ψ0
λλ′( ; q)D0λ′µ′

(q)ψ0
µ′µ( ; q) = ψ0

λµ( ; q),

D0
λλ′(q)ψ0λ′µ′

( ; q)D0
µ′µ(q) = D0T

λµ(q).

Notice that −q2D0T
λν (q) is the projector onto the transverse

tensors.
The tree representation of the photon propagator en-

joys the following property [11]

ϕ0
µν(tl ∨ tr; q) = ϕ0

µλ( ∨ tr; q)[(D0)−1]λλ
′
(q)

× ϕ0
λ′ν(tl; q).

This equality is non-trivial only if tl �= . But then
ϕ0
µλ( ∨tr; q) and ϕ0

λ′ν(tl; q) are transverse [11]; this cancels
the term proportional to ξ and we can write

ϕ0
µν(tl ∨ tr; q) = ϕ0

µλ( ∨ tr; q)ψ0λλ′
( ; q)ϕ0

λ′ν(tl; q).

(31)

The fact that ϕ0
µν(tl ∨ tr; q) is a product for tl �= can be

checked in Appendix 3.
As shown in Sect. A.2, ψ0

µν(tl ∨ tr) = 0 if tl �= and

ψ0
µν( ∨ tr; q) = ψ0

µλ( ; q)ϕ0λλ′
( ∨ tr; q)ψ0

λ′ν( ; q).

(32)

Hence, the vacuum polarizations are finally expanded as

Πλµ(q) =
∑
t

e
2|t|+2
0 ψ0

λµ( ∨ t; q), (33)

Π̄λµ(q) =
∑
t

e2|t|+2ψ̄0
λµ( ∨ t; q). (34)
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4.3 Trees and renormalization constants

According to Dyson’s multiplicative renormalization of
QED, we consider three renormalization constants Z2, Z3
and δm. We expand these constants over planar binary
trees:

Z2 = 1 +
∑
|t|>0

e2|t|ζ2(t), with ζ2( ) = 1, (35)

Z3 = 1 −
∑
|t|>0

e2|t|ζ3(t), with ζ3( ) = 1, (36)

δm =
∑
|t|>0

e2|t|ζm(t), with ζm( ) = 0. (37)

The minus sign in the definition of Z3 follows [10] and
will be explained in Sect. 8.3. The values of ζ2(t), ζ3(t)
and ζm(t) cannot be determined for each tree. They will be
summed over sets of trees, and the sum will be determined
by the renormalization conditions (see Sect. 8.2).

4.4 Recursive equations for bare propagators

In [11], we have obtained recursive relations for ϕ(t) and
ϕλµ(t).

For the electron propagator, ϕ0(t; q), for t = tl ∨ tr
can be obtained from ϕ0

λµ(tl; q) and ϕ1(tr; q;λ, p) by the
equation

ϕ0(t; q) = iS0(q)
∫

d4p

(2π)4
γλϕ0

λµ(tl; p)

× ϕ1(tr; q − p;µ, p). (38)

The higher components ϕn(t; q; {λ, p}1,n) for n > 0 are
defined recursively by

ϕn(t; q; {λ, p}1,n) = S0(q)γλ1ϕn−1(t; q + p1; {λ, p}2,n)

+i
n∑

k=0

∫
d4p

(2π)4
S0(q)γλϕk

λλ′(tl; p; {λ, p}1,k)

×ϕn−k+1
Σ (tr; q − p;λ′, p+ Pk, {λ, p}k+1,n),

where we have denoted Pk = p1 + · · · + pk, (P0 = 0) and
{λ, p}1,n = λ1, p1, . . . , λn, pn. The initial data are

ϕ0( ; q) = S0(q),

ϕ1( ; q;λ1, p1) = S0(q)γλ1S0(q + p1),

ϕn( ; q; {λ, p}1,n) = S0(q)γλ1S0(q + p1)γλ2 · · · γλn

× S0(q + p1 + · · · + pn). (39)

The symbol ϕn+1
Σ (t; q; z, {z}1,n) is defined as the sum

of n + 1 terms, where the first variable z = (λ, p) is ex-
changed in turn with each of the variables zi = (λi, pi):

ϕn+1
Σ (t; q; z, {z}1,n) = ϕn+1(t; q; z, {z}1,n)

+
n−1∑
k=1

ϕn+1(t; q; {z}1,k, z, {z}k+1,n)

+ϕn+1(t; q; {z}1,n, z).

Similarly, for the photon propagator, ϕ0
µν(t; q) is ob-

tained from the equation

ϕ0
µν(t; q) = −iD0

µλ(q)
∫

d4p

(2π)4
tr
[
γλϕ1(tr; p;λ′,−q)]

×ϕ0
λ′ν(tl; q). (40)

The higher components ϕn
µν(t; q; {λ, p}1,n) satisfy the

recursive relation

ϕn
µν(t; q; {λ, p}1,n) = −i

n∑
k=0

∫
d4p

(2π)4
D0

µλ(q)

×tr
[
γλϕk+1

Σ (tr; p;λ′,−q − Pk, {λ, p}1,k)
]

×ϕn−k
λ′ν (tl; q + Pk; {λ, p}k+1,n),

with the initial data

ϕ0
µν( ; q) = D0

µν(q),

ϕn
µν( ; q; {λ, p}1,n) = 0 for n ≥ 1.

4.5 The pruning operator

In this section, we introduce the pruning operator P which
will prove very useful to obtain a recursive expression for
renormalized propagators. If t is a tree, P (t) is a sum of
n(t) terms of the form uj ⊗vj , where uj and vj are planar
binary trees. More formally

P (t) =
n(t)∑
j=1

uj ⊗ vj . (41)

Before we fully define P (t), we want to show why it is
useful. If, for each tree t, ϕ(t) and ψ(t) are 4 × 4 complex
matrices, we call the convolution of ϕ and ψ the quantity

(ϕ.̄ψ)(t) =
n(t)∑
i=1

ϕ(ui)ψ(vi).

The main property of this convolution was established in
[11]. If

X(λ) =
∑
t

λ|t|x(t) and Y (λ) =
∑
t

λ|t|y(t),

with x( ) = y( ) = 0, then

X(λ)Y (λ) =
∑
t

λ|t|(x.̄y)(t).

In other words, the pruning operator and the convolution
enable us to multiply series indexed by planar binary trees.

This nice property justifies the trouble of introducing
P (t). First, n(t), the number of terms in (41), is defined
by n( ) = 0 and

n(t) = 0 if t = tl ∨ ,

n(t) = n(tr) + 1 if t = tl ∨ tr, tr �= . (42)
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Finally, P (t) is determined recursively by P ( ) = 0 and

P (t) = 0 if t = tl ∨ ,

P (t) = (tl ∨ ) ⊗ tr +
n(tr)∑
j=1

(tl ∨ uj) ⊗ vj

if t = tl ∨ tr, tr �= . (43)

The trees uj and vj in (43) are generated by (41) for t = tr.
For instance

P ( ) = P ( ) = P ( ) = P ( ) = P ( ) = 0,

P ( ) = ⊗ , P ( ) = ⊗ ,

P ( ) = ⊗ , P ( ) = ⊗ + ⊗ .

We show in the appendix that the pruning operator is
co-associative, that is

(P ⊗ id) ⊗ P = (id ⊗ P ) ⊗ P. (44)

Therefore the convolution is associative.
We consider on trees the structure of an associative al-

gebra T (Y ) given by the (non-commutative) tensor prod-
uct, T (Y ) = C ⊕ Y ⊕ Y ⊗2 ⊕ . . ., and we set the root as
the unit: ⊗ t = t⊗ = t. Then we extend P to T (Y ) as
a multiplicative map, but P does not preserve the unit,
since P ( ) is not equal to ⊗ . We can define a coproduct

∆P t = ⊗ t+ P (t) + t⊗ ,

∆P = ⊗ .

This∆P is the coproduct of a Hopf algebra over planar
binary trees. Its antipode is given by the recursive formula

SP (t) = −t− (Id.̄SP )(t) = −t− (SP .̄Id)(t), (45)

for t �= , and SP ( ) = .
To define the convolution of x(t) and y(t), we needed

the condition x( ) = y( ) = 0. When this condition is not
satisfied, we have two solutions. The first solution is to
isolate the root, so that

X(λ)Y (λ) = x( )y( ) + (X(λ) − x( ))y( )
+ x( )(Y (λ) − y( )
+ (X(λ) − x( ))(Y (λ) − y( ))

= x( )y( ) + x( )
∑
|t|>0

λ|t|y(t)

+
∑
|t|>0

λ|t|x(t)y( ) +
∑
|t|>0

λ|t|(x.̄y)(t).

The second solution is to use the coproduct ∆P . Thus,
we define the convolution . by

(x . y)(t) = x( )y(t) + (x.̄y)(t) + x(t)y( ),
(x . y)( ) = x( )y( ).

With this alternative convolution, the equality

X(λ)Y (λ) =
∑
t

λ|t|(x . y)(t) (46)

is satisfied even if x or y is not zero on the root.
In our final formulas, we prefer to use the convolution .̄

because its ensures the recursivity of the expressions (the
trees in (x.̄y)(t) are strictly smaller than t).

A last point concerning notation. If ϕ and ψ depend
on other arguments, we leave them inside ϕ and ψ. For
example

(ϕ(q).̄ψ(q))(t) =
n(t)∑
j=1

ϕ(uj ; q)ψ(vj ; q).

4.6 The self-energy

As a first application of the convolution defined in the
previous section, we introduce the tree expansion for the
electron self-energy.

The bare electron self-energy Σ(q) is defined by

S−1(q) = γ · q −m−Σ(q) =
∑
t

e
2|t|
0 ψ0(t; q),

where

ψ0( ; q) = γ · q −m and Σ(q) = −
∑
|t|>0

e
2|t|
0 ψ0(t; q),

so that ψ0( ; q)ϕ0( ; q) = 1. The pruning operator is used
to define the expansion of the bare self-energy over trees in
terms of the expansion of the bare electron Green function
over trees:

ψ0(t) = −ψ0( )ϕ0(t)ψ0( ) − ψ0( )(ϕ0.̄ψ0)(t),
(47)

ϕ0(t) = −ϕ0( )ψ0(t)ϕ0( ) − (ϕ0.̄ψ0)(t)ϕ0( ).
(48)

In terms of the antipode, (47) can be rewritten

ψ0(t) = ψ0( ; q)(ϕ0(q) ◦ SP )(t)ψ0( ; q). (49)

Similarly, for the renormalized self-energy, we have

ψ̄0(t) = ψ0( ; q)(ϕ̄0(q) ◦ SP )(t)ψ0( ; q). (50)

We must give some details concerning the meaning of ex-
pressions like (ϕ0(q)◦SP )(t). Because of its definition (45),
the antipode SP acting on t generates a sum of products of
trees. The action of ϕ0(q) on this sum is linearly extended
from its action on Y to T (Y ). In other words

ϕ0(t1 + t2; q) = ϕ0(t1; q) + ϕ0(t2; q),
ϕ0(λt; q) = λϕ0(t; q).

For a product of trees, we do not want to simply multi-
ply two Feynman diagrams for the electron propagator;
we must cancel one of the free propagators among them.
Thus, the product is

ϕ0(t1t2; q) = ϕ0(t1; q)ψ0( ; q)ϕ0(t2; q). (51)
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This operation becomes clear if one tries it on some exam-
ples given in Appendix 3. Since the (matrix) product on
the right-hand side of (51) is not commutative, the algebra
product on trees is not commutative either.

In the presence of an external field A0, the definition
(16) of S0(z, y;A0) gives, after inversion and Fourier trans-
form,

ψ0( ; q;A0) = γ · q −m− e0γ ·A0(q). (52)

Thus we obtain at A0 = 0

ψ0( ; q) = γ · q −m,
ψ1( ; q;λ, p) = −γλ,

ψn( ; q; {λ, p}1,n) = 0, for n > 1.

The components of ψ0(t; q) for the other trees t are
obtained by using the chain rule for the functional deriva-
tive of (47) with respect to e0A0

λi
(pi), taken at A0 = 0.

For n = 1, this gives the same result as in Sect. 6.4 of
[11].

Finally it is shown in Sect. A.3 that the bare self-
energy can be calculated from the recursive equation

ψ0(t; q) = i
∫

d4p

(2π)4
γλϕ0

λλ′(tl; p)g(tr; q − p;λ′, p),

(53)

where

g(tr; q − p;λ′, p) = −(ϕ1(q − p;λ′, p) . ψ0(q))(tr)
= (ϕ0(q) . ψ1(q − p;λ′, p))(tr).

It can be shown that ψ0(t; q) is a sum of one-particle irre-
ducible (1PI) Feynman diagrams. The proof is recursive: if
ψ0(t; q) is such a sum for all |t| < n, then ψ1(t; q−p;λ′, p)
is also a sum of 1PI diagrams, with one external photon
line. Therefore, according to its second definition, g(tr; q−
p;λ′, p) is a sum of diagrams made up of an electron prop-
agator (on the left) followed by a reduced vertex (on the
right). According to (53), ψ0(t; q) is obtained by plugging
the photon propagator ϕ0

λλ′(tl; p) on the external photon
line of g(tr; q − p;λ′, p), and closing this photon propaga-
tor over the electron propagator of g(tr; q − p;λ′, p). This
gives again a sum of 1PI diagrams.

4.7 The higher components ϕn(t)

For a complete recursive solution of the renormalized prop-
agators, we must define the higher components ϕ̄n(t) and
ϕ̄n
µν(t). As for the bare propagators (see [11]), they are

defined as the functional derivative with respect to an ex-
ternal electromagnetic field.

Let us be more accurate concerning this external field.
As noticed by Bogoliubov and Shirkov, (17) is not the
Schwinger equation for QED with an external electro-
magnetic field, since the latter involves tadpole diagrams
which are absent from (17). However, (17) is the Schwinger

equation for a renormalizable theory (i.e. QED without
tadpoles), and Dyson’s relations (9)–(13) still hold.

In the real space, the bare and renormalized electron
Green functions are expanded as

S(x, y;A) =
∑
t

e
2|t|
0 ϕ0(t;x, y;A),

S̄(x, y;A) =
∑
t

e2|t|ϕ̄0(t;x, y;A).

In these expressions, we do not distinguish between A
and A0 because A0 comes always multiplied by e0 and
e0A

0 = eA. On the root, ϕ0( ;x, y;A) = S0(x, y;A). The
higher components of ϕ0(t;x, y;A) and ϕ̄0(t;x, y;A) must
satisfy

δ

eδAλ(z)
ϕn(t;x, y; {λ, z}1,n;A)

= ϕn+1
Σ (t;x, y;λ, z, {λ, z}1,n;A),

where the notation ϕn+1
Σ and {λ, z}1,n is defined in

Sect. 4.4.
Since our purpose is QED without external field, A is

just used to take functional derivatives, and the higher
components we actually need are

ϕn(t;x, y; {λ, z}1,n) = ϕn(t;x, y; {λ, z}1,n;A)

for A = 0.
At A = 0, the theory becomes translationally invari-

ant, and a Fourier transform gives us

δ

eδAλ(p)
ϕn(t; q; {λ, p}1,n) = ϕn+1

Σ (t; q;λ, p, {λ, p}1,n).

In the recursive equations for ϕ(t) we meet products
of propagators such as ϕ0(t1; q)ϕ0(t2; q). In the real space,
this gives a space-time convolution of ϕ0(t1;x, y) and ϕ0

(t2;x, y). We take the functional derivative of this con-
volution with respect to A(z), we Fourier transform the
result and we obtain at A = 0

δ

eδAλ(p)
(
ϕ0(t1; q)ϕ0(t2; q)

)
= ϕ0(t1; q)ϕ1(t2; q;λ, p)
+ϕ1(t1; q;λ, p)ϕ0(t2; q + p).

This expression satisfies energy-momentum conservation.
To take the functional derivatives of the recursive equa-

tions for renormalized quantities, we need the indepen-
dence of the renormalization constants with respect to the
external field. There are various ways to prove this. For
instance, the differential form of the Ward identity ((21)
in [11]) is

∂ϕn(t; q; {λ, p}1,n)
∂qµ

= −ϕn+1
Σ (t; q;µ, 0, {λ, p}1,n).

The Ward identity is also valid for the renormalized elec-
tron propagator [59], so that

∂ϕ̄n(t; q; {λ, p}1,n)
∂qµ

= −ϕ̄n+1
Σ (t; q;µ, 0, {λ, p}1,n).
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From the definitions (49) and (50) of the bare and
renormalized self-energies we obtain

∂ψn(t; q; {λ, p}1,n)
∂qµ

= −ψn+1
Σ (t; q;µ, 0, {λ, p}1,n),

∂ψ̄n(t; q; {λ, p}1,n)
∂qµ

= −ψ̄n+1
Σ (t; q;µ, 0, {λ, p}1,n).

Now we start from the relation between the renormal-
ized and bare self-energies, for instance

ψ̄0( ; q) = ψ0( ; q) + ζ2( )(γ · q −m) − ζm( ).
(54)

On the one hand, we take the derivative of (54) with re-
spect to qµ and use the Ward identities (and the fact that
ζ2( ) and ζm( ) do not depend on q) to obtain

−ψ̄1( ; q;µ, 0) = −ψ1( ; q;µ, 0) + ζ2( )γµ. (55)

On the other hand, we take the functional derivative
of (54) at A = 0 and we obtain

ψ̄1( ; q;µ, p) = ψ1( ; q;µ, p) − ζ2( )γµ

+ ζ ′
2( )(γ · q −m) − ζ ′

m( ), (56)

where ζ ′
2( ) and ζ ′

m( ) denote the derivative of ζ2( ) and
ζm( ) with respect to Aµ(p) at A = 0. The term ζ2( )γµ
comes from the functional derivative of (52).

If we take the value p = 0 in (56) and compare with
(55) we obtain ζ ′

2( ) = 0 and ζ ′
m( ) = 0. Further differen-

tiation shows that ζ(n)
2 ( ) = 0 and ζ(n)

m ( ) = 0. We can ap-
ply this proof to any tree t, once the subdivergences have
been subtracted. A similar proof can be given for ζ3(t), us-
ing Furry’s theorem instead of the Ward identities. This
proof assumes that the renormalization conditions do not
depend on A (e.g. minimal subtraction).

More physically, S(x, y;A) has the same singular struc-
ture at x = y as S0(x, y), except for logarithmic terms
that are integrable. Thus, the renormalization constants
are determined by S0(x, y).

This method of functional derivatives avoids the usual
renormalization of vertex diagrams. Renormalizing prop-
agators is sufficient.

5 The renormalized electron propagator

In this section, we show that the recursive equation for
the electron propagator is

ϕ̄0(t; q) = ρ(t)ϕ0( ; q) + ζm(t)ϕ0( ; q)2

+ϕ0( ; q)(ζm.̄ϕ̄0(q))(t) (57)

+iϕ0( ; q)
∫

d4p

(2π)4
γλϕ̄0

λλ′(tl; p)ϕ̄1(tr; q − p;λ′, p),

where ρ(t) = −ζ2(t) − (ρ.̄ζ2)(t) = ζ2 ◦ SP (t), starting at
ρ( ) = −ζ2( ).

It is natural to define a new quantity α(t; q) by
α(t; q) = 0 for t = and, for t = tl ∨ tr,

α(t; q) = ie2S0(q)

×
∫

d4p

(2π)4
γλϕ̄λλ′(tl; p)ϕ̄1(tr; q − p;λ′, p).

Then we consider (18) and in the integral over p, we ex-
pand the photon propagator over trees tl using (26) and
the electron propagator over trees tr using (25). We rec-
ognize a sum of α(tl ∨ tr) and the integral becomes

ie2S0(q)
∫

d4p

(2π)4
γλD̄λλ′(p)

δS̄(q − p)
eδAλ′(p)

=
∑
t

e2|t|α(t; q).

In the other terms of (18), we expand S̄(q) and renor-
malization constants over trees using (25), (35), (36) and
(37). We replace products by convolutions . according to
(46) in all expressions except the integral and we obtain∑

t

e2|t|(ϕ̄0(q) . ζ2)(t) = ϕ0( ; q)

+
∑
t

e2|t|(α(q) . ζ2)(t)

+
∑
t

e2|t|ϕ0( ; q)(ζm . ϕ̄0(q) . ζ2)(t).

The bold step is now to identify the terms corresponding
to a given tree t. This yields

(ϕ̄0(q) . ζ2)(t) = ϕ0( ; q)ε(t) + (α(q) . ζ2)(t)
+ϕ0( ; q)(ζm . ϕ̄0(q) . ζ2)(t), (58)

where ε(t) = 1 if t = and ε(t) = 0 otherwise. In fact,
this step is a bit too bold. If (58) is summed over t, then
the result determines a finite renormalized electron prop-
agator. However, the fact that the sum is finite does not
mean that each term is finite, and it turns out that all the
ϕ̄0(t; q) are not finite. Thus, we shall have to use a sum-
mation over certain classes of trees to get finite results.

To simplify expression (58), we follow Kreimer [60] and
compute (ϕ̄0(q).ζ2 .ζ2 ◦SP )(t). The basic property of the
antipode is Id . SP = ε; therefore

ζ2 . ζ2 ◦ SP = ζ2(Id . SP ) = ζ2( )ε = ε. (59)

The associativity of . is crucial here. On the one hand,(
ϕ̄0(q) . (ζ2 . ζ2 ◦ SP )

)
(t) = ϕ̄0(q)(t) according to (59).

On the other hand, we calculate
(
(ϕ̄0(q) . ζ2) . ζ2 ◦ SP

)
,

where we replace ϕ̄0(q). ζ2 by the right-hand side of (58).
Equation (59) gives us(

(ϕ̄0(q) . ζ2) . ζ2 ◦ SP
)
= ζ2 ◦ SP (t)ϕ0( ; q)

+ϕ0( ; q)(ζm . ϕ̄0(q))(t) + α(t).

From the associativity of . and the definition of α(t; q) we
obtain our final recursive equation (57) for the electron
propagator.
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The recursive equation is completed by the equation
for the higher components of ϕ̄0(t; q). If we take the func-
tional derivative of (57), and make the same simplification
as in [11]), we obtain

ϕ̄n(t; q; {λ, p}1,n) = ϕ0( ; q)γλ1 ϕ̄n−1(t; q; {λ, p}2,n)

−ρ(t)ϕ0( ; q)δn,0 + ζm(t)ϕ0( ; q)ϕ̄n( ; q; {λ, p}1,n)

+ϕ0( ; q)(ζm.̄ϕ̄n(q; {λ, p}1,n))(t)

+iϕ0( ; q)
n∑

k=0

∫
d4p

(2π)4
γλϕ̄k

λλ′(tl; p; {λ, p}1,k)

×ϕ̄n−k+1
Σ (tr; q − p;λ′, p, {λ, p}k+1,n). (60)

Another useful formula can be obtained by defining

f̄0(t; q) = (ϕ̄0(q) . ζ2)(t) (61)
= ϕ̄0(t; q) + (ϕ̄0(q).̄ζ2)(t)
+ ϕ0( ; q)ζ2(t),

f̄1(t; q;λ′, p) = (ϕ̄1(q;λ′, p) . ζ2)(t). (62)

With this notation (58) is rewritten

f̄0(t; q) = ζm(t)ϕ0( ; q)2 + ϕ0( ; q)(ζm.̄f̄0(q))(t)

+iϕ0( ; q)
∫

d4p

(2π)4
γλϕ̄0

λλ′(tl; p)

×f̄1(tr; q − p;λ′, p). (63)

The higher components f̄n(t; q) are obtained by func-
tional derivative of (63), as explained in Sect. 4.7. The
recursive equation for f̄n(t; q) is the same as (60), where
ϕ is replaced by f and the term ρ(t)ϕ0( ; q)δn,0 is sup-
pressed.

6 The renormalized photon propagator

Bogoliubov and Shirkov [30] have shown that the renor-
malization of two Feynman diagrams linked by a single
photon (or electron) line is obtained by an independent
renormalization of each of the two subgraphs. In our lan-
guage, this means that the renormalized form of (31) is

ϕ̄0
µν(tl ∨ tr; q) = ϕ̄0

µλ( ∨ tr; q)ψ0λλ′
( ; q)ϕ̄0

λ′ν(tl; q).

(64)

Therefore, all trees for the photon propagator can be
renormalized once we have renormalized the special trees

∨ tr. Now we show that the recursive equation for the
renormalized photon term ϕ̄0

µλ( ∨ tr; q) is

ϕ̄0
µν( ∨ t; q) = ζ3( ∨ t)ϕT

µν( ; q)

− iϕT
µλ( ; q)

∫
d4p

(2π)4
tr
[
γλf̄1(t; p;λ′,−q)]

× ϕT
λ′ν( ; q), (65)

where f̄1 was defined in the previous section.

To prove this, we start from several remarks: we have
ψ̄0
µν(tl ∨ tr) = 0 is tl �= and

ψ̄0
µν( ∨ tr; q) = ψ0

µλ( ; q)ϕ̄0λλ′
( ∨ tr; q)ψ0

λ′ν( ; q).

Because of this close analogy between photon propa-
gator and vacuum polarization, we shall rewrite (22) as∑

t

e2|t|ϕ̄0
µν( ∨ t; q) = ϕT

µλ( ; q)Π̄λλ′
(q)ϕT

λ′ν( ; q)

= (1 − Z3)ϕT
λµ( ; q) − Z2ie2ϕT

µλ( ; q)

×
∫

d4p

(2π)4
tr
[
γλ

δS̄(p)
eδAλ′(−q)

]
ϕT
λ′ν( ; q).

We rewrite this expression to isolate the root compo-
nents:∑

t

e2|t|ϕ̄0
µν( ∨ t; q) = (1 − Z3)ϕT

λµ( ; q)

−ie2ϕT
µλ( ; q)

∫
d4p

(2π)4
tr
[
γλ

δS̄(p)
eδAλ′(−q)

]
ϕT
λ′ν( ; q)

−ie2ϕT
µλ( ; q)

∫
d4p

(2π)4
tr
[
γλ

δS̄(p)
eδAλ′(−q)

]
(Z2 − 1)

×ϕT
λ′ν( ; q).

We expand all quantities over trees, using

δS̄(p)
eδAλ′(−q) =

∑
t

e2|t|ϕ̄1(t; p;λ′,−q),

and we multiply through the pruning operator. Then we
identify the terms corresponding to the same tree and we
obtain

ϕ̄0
µν( ∨ t; q) = ζ3( ∨ t)ϕT

µν( ; q) + ζ2(t)ϕ0
µν( ; q)

−iϕT
µλ( ; q)

∫
d4p

(2π)4
tr
[
γλϕ̄1(t; p;λ′,−q)]

×ϕT
λ′ν( ; q)

−iϕT
µλ( ; q)

∫
d4p

(2π)4
tr
[
γλ(ϕ̄1(p;λ′,−q).̄ζ2)(t)

]
×ϕT

λ′ν( ; q).

From the definition (62) for f̄1, we can rewrite this
expression as our recursive equation (65).

The higher components are obtained very simply by
taking the functional derivative of (65). Since ϕT

µν( ; q) is
independent of the external field, we obtain

ϕ̄n
µν( ∨ t; q; {λ, p}1,n) = −iϕT

µλ( ; q)

×
∫

d4p

(2π)4
tr
[
γλf̄n+1

Σ (t; p;λ′,−q, {λ, p}1,n)
]

×ϕT
λ′ν( ; q).

For the other trees, we use

ϕ̄n
µν(tl ∨ tr; q; {λ, p}1,n) =

n∑
k=0

ϕ̄k
µλ( ∨ tr; q; {λ, p}1,k)

×ψ0λλ′
( ; q)ϕ̄n−k

λ′ν (tl; q; {λ, p}k+1,n).
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6.1 Properties of renormalized photon propagator

From (63) and (65) we can deduce that the renormalized
photon propagator does not depend on any ζ2(t). In fact,
we shall prove that f̄0(t; q), f̄1(t; q;λ, p) and ϕ̄0

µν(t; q) do
not depend on any ζ2(t′). To do this, we reintroduce a
non-zero external field A. The property is clearly true for
t = . If it is true for all trees with |t| < N , let us take
a tree with |t| = N . Because of (63), f̄0(t; q) does not
depend on any ζ2(t′). Since f̄1(t; q;λ, p) is obtained by a
functional derivative of f̄0(t; q) with respect to eA, it does
not depend on any ζ2(t′) either (eA does not depend on
any ζ2(t′)). If t = ∨tr, because of (65), ϕ̄0

µν( ∨tr; q) does
not depend on any ζ2(t′) since none of the terms on the
right hand side do. Finally, if t is not of the form t = ∨tr,
it is of the form t = tl ∨ tr, and ϕ̄0

µν(tl ∨ tr; q) is obtained
from ϕ̄0

µν( ∨ tr; q) and ϕ̄0
µν(tl; q), which do not depend on

any ζ2(t′).
With the same reasoning, we see that f̄0(t; q) and

ϕ̄0
µν(t; q) are independent of the gauge parameter ξ for
t �= .

7 Electron self-energy

To calculate the electron self-energy, we start from (57)
that we rewrite

ϕ̄0(t; q) = ρ(t)ϕ0( ; q) + ζm(t)ϕ0( ; q)2 + α(t; q)
+ ϕ0( ; q)(ζm.̄ϕ̄0(q))(t).

The self-energy is obtained by introducing the last
equation into (47). This gives us

ψ̄0(t; q) = −ρ(t)ψ0( ; q) − ζm(t)
−ψ0( ; q)α(t; q)ψ0( ; q)
−(ρ.̄ψ̄0(q))(t) − (ζm.̄ϕ̄0(q))(t)ψ0( ; q)
−ϕ0( ; q)(ζm.̄ψ̄0(q))(t) − (ζm.̄ϕ̄0(q).̄ψ̄0(q))(t)
−ψ0( ; q)(α(q).̄ψ̄0(q))(t).

If we factorize ζm and use (48), the expression reduces to

ψ̄0(t; q) = −ρ(t)ψ0( ; q) − ζm(t)
− ψ0( ; q)α(t; q)ψ0( ; q) − (ρ.̄ψ̄0(q))(t)
− ψ0( ; q)(α(q).̄ψ̄0(q))(t).

From the definition of α(t; q) and the result of Sect. A.3
we obtain

ψ̄0(t; q) = −ρ(t)ψ0( ; q) − ζm(t) − (ρ.̄ψ̄0(q))(t)

+ i
∫

d4p

(2π)4
γλϕ̄0

λλ′(tl; p)ḡ(tr; q − p;λ′, p),

where

ḡ(tr; q − p;λ′, p) = −(ϕ̄1(q − p;λ′, p) . ψ̄0(q))(tr)
(66)

= (ϕ̄0(q) . ψ̄1(q − p;λ′, p))(tr).
(67)

It can be shown that the only term proportional to
ψ0( ; q) in −ρ(t)ψ0( ; q) − (ρ.̄ψ̄0(q))(t) is ζ2(t)ψ0( ; q).

8 Renormalization and Ward identities

In this section, we describe in what sense the renormal-
ization of Feynman diagrams or expansion over trees are
incompatible with the Ward identity Z1 = Z2. To do that,
we first need the Connes–Kreimer Hopf algebra of Feyn-
man diagrams for QED.

8.1 Connes–Kreimer algebra for QED

The Hopf algebra of renormalization for QED is obtained
by adapting the results of Connes and Kreimer [9]. Accord-
ing to standard results, QED is renormalized once three
types of 1PI diagrams are renormalized: the self-energy,
the vacuum polarization and the reduced vertex Feynman
diagrams [15,2].

Letting Γ be one of these three diagrams, the Connes–
Kreimer coproduct of Γ is written

∆CKΓ = Γ ⊗ 1 + 1 ⊗ Γ
+

∑
{γi,γ′i′,... }

γ(i)γ
′
(i′) · · · ⊗ Γ/{γ(i), γ′

(i′), . . . }.

In this expression, the sum runs over all sets of disjoint
renormalization parts of Γ . A renormalization part γ of
Γ is a 1PI subgraph of Γ , different from Γ itself, such
that γ has two or three (amputated) external lines. Two
renormalization parts γ and γ′ are disjoint if they have
no vertex in common. There are three types of renormal-
ization parts: self-energy 1PI diagrams (γ = b b), vacuum
polarization 1PI diagrams (γ = b b) and reduced vertex
1PI diagrams (γ = b b

b ). The index (i) depends on the
type of the renormalization part. If γ = b b then i is 0 or
2, if γ = b b then i is 3, if γ = b b

b then i is 1. There are
three differences between our notation and that of Connes
and Kreimer [9]. Firstly, we use the notation {γi, γ′i′, . . . }
for what they denote by γ. This enables us to refer only to
1PI diagrams. Secondly our two-lines vertices are γ ·p−m
and m, whereas they use γ ·p and m. With this change, we
can write the renormalized propagators of massive QED
as a sum of counterterms multiplied by derivatives of the
bare propagators with respect to the mass m. Thirdly, the
indices of their two-line vertices are 0 and 1 and ours are
0, 1, 2, 3. This last change is justified by the identification
of the counterterms with the renormalization factors δm,
Z1, Z2 and Z3.

Finally let us define Γ/{γ(i), γ′
(i′), . . . }. We start by the

definition of Γ/γ(i). It varies with the type of renormal-
ization part and with the index (i).

If γ = b b is a self-energy 1PI diagram, then i can
be 0 and 2. In the complete diagram Γ , the self-energy
subdiagram γ = b b is a part of an electron propagator
b b b b. In the term Γ/γ(0), the propagator diagram b b b b

is replaced by a product of two free propagators b b b, in
the term Γ/γ(2) the propagator diagram b b b b is replaced
by a single free propagator b b.

If γ = b b is a vacuum polarization 1PI diagram, then i
is 3. In the complete diagram Γ , the vacuum polarization
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γ = b b is a part of a photon propagator b b b b. In the
term Γ/γ(3), the propagator diagram b b b b is replaced by
a single free propagator b b.

If γ = b b
b is a reduced vertex 1PI diagram, then i is 1.

In the complete diagram Γ , the reduced vertex γ = b b
b is

a part of a vertex diagram
b b b

b
b

b . In the term Γ/γ(1), the

vertex diagram
b b b

b
b

b is replaced by a free vertex
b b b

b .
The terms Γ/{γ(i), γ′

(i′), . . . } are then defined recur-
sively. For instance, to define Γ ′′ = Γ/{γ(i), γ′

(i′)}, we first
put Γ ′ = Γ/γ(i), so that Γ ′′ = Γ ′/γ′

(i′).
A few examples might be useful to the reader. For Γ

=� the coproduct is

∆CKΓ = Γ ⊗ 1 + 1 ⊗ Γ + � (0) ⊗�
+� (2) ⊗� +� (1) ⊗ �
+� (1) ⊗ 	 .

For Γ=
 the coproduct is

∆CKΓ = Γ ⊗ 1 + 1 ⊗ Γ + � (0) ⊗�
+
 (0) ⊗� + 2� (2) ⊗�
+� (0)� (0) ⊗� + 2� (0)� (2) ⊗�
+� (2)� (2) ⊗ � .

For Γ =� the coproduct is

∆CKΓ = Γ ⊗ 1 + 1 ⊗ Γ +� (3) ⊗�
+2� (1) ⊗� .

The renormalization of a self-energy, a vacuum polar-
ization or a reduced vertex diagram proceeds in two steps.
In the first step, we assume that all the counterterms Ci(γ)
of the divergent subdiagrams γ of Γ have been determined.
Then the subdivergences of Γ are removed by the follow-
ing formulas:

R̄(Γ ; q) = U(Γ ; q) +
∑

{γi,γ′i′,... }
Ci(γ)Ci′(γ′) · · ·

× U(Γ/{γ(i), γ′
(i′), . . . }; q)

for a self-energy or a vacuum polarization diagram Γ and

R̄(Γ ; q;λ, p) = U(Γ ; q;λ, p) +
∑

{γi,γ′i′,... }
Ci(γ)Ci′(γ′) · · ·

× U(Γ/{γ(i), γ′
(i′), . . . }; q;λ, p)

for a reduced vertex diagram Γ .
In these expressions U(Γ ; ·) is the value of the Feyn-

man diagram Γ and U(Γ/{γ(i), γ′
(i′), . . . }; ·) is the value of

the Feynman diagram Γ/{γ(i), γ′
(i′), . . . }. The dot · repre-

sents the arguments of U (i.e. “q” or “q;λ, p”).
In the second step, we determine the counterterms

Ci(Γ ) of the divergent graph Γ . Again, we must distin-
guish three cases. A self-energy diagram is linearly di-
vergent; thus we must remove two terms. From Lorentz
covariance, we can write the renormalized value of the di-
agram Γ as

R(Γ ; q) = R̄(Γ ; q) + C0(Γ ) + C2(Γ )(γ · q −m).
(68)

The factor γ · q−m in the second counterterm of any self-
energy diagram γ explains why the product of two free
propagators present in Γ/γ(0) becomes a single propaga-
tor in Γ/γ(2): the counterterm cancels out one of the two
propagators.

A vacuum polarization diagram is quadratically diver-
gent; thus we should have to remove three terms. However,
Lorentz covariance and the Ward identities for the pho-
ton propagators cancel the first two counterterms, and the
renormalized value of Γ is

R(Γ ; q) = R̄(Γ ; q) + C3(Γ )ψ0
λµ( ; q). (69)

There is a subtlety here. We know that R̄(Γ ; q) is trans-
verse. Thus it is necessary to use a transverse counterterm
C3(Γ )ψ0

λµ( ; q) to obtain a transverse vacuum polarization
Π̄λµ(q). However, to obtain a single free photon propaga-
tor in the operation /Γ(3), we used a counterterm of the
form C3(Γ )D0−1(q), which cancels out one of the product
of two free photon propagators that would normally be
present for a quadratically divergent diagram (this prod-
uct disappears only because of Lorentz covariance and the
Ward identities). Therefore, the renormalization rules de-
fine actually

R′(Γ ; q) = R(Γ ; q) − C3(Γ )ξqλqµ

= R̄(Γ ; q) + C3(Γ )D0−1
(q).

In the Landau gauge ξ = 0 the two renormalizations are
identical. In another gauge we obtain

Π̄ ′
λµ(q) =

∑
Γ= b b

e|Γ |R′(Γ ; q) (70)

= Π̄λµ(q) + (Z3 − 1)ξqλqµ,

where |Γ | is the number of vertices of Γ . The correspond-
ing renormalized propagator is

D̄′
λµ(q) = (D0(q)−1 − Π̄ ′(q))−1

= D̄T
λµ(q) − 1

Z3ξ

qλqµ
(q2 + iε)2

.
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The bare gauge parameter is multiplied by Z3, as expected
from [2], p. 414. The dependence on ξ of the propagators
and renormalization factors is known explicitly to all or-
ders (see [61] for a recent review).

Finally, a reduced vertex diagram is logarithmically
divergent, and its renormalized value is

R(Γ ; q;λ, p) = R̄(Γ ; q;λ, p) + C1(Γ ). (71)

The infinite constants Ci(Γ ) are determined from the re-
normalization conditions.

8.2 Renormalization conditions

The value of C0(Γ ), C1(Γ ), C2(Γ ) and C3(Γ ) are deter-
mined from the renormalization conditions. For instance,
the conditions used by Zimmermann are

R(Γ ; 0) = R̄(Γ ; 0) − C2(Γ )m+ C0(Γ ) = 0,
∂R(Γ ; 0)
∂qµ

=
∂R̄(Γ ; 0)
∂qµ

+ C2(Γ )γµ = 0.

Since tr[γµγµ] = 16, we can define C2(Γ ) by

C2(Γ ) = − 1
16

tr
[
∂R̄(Γ ; 0)
∂qµ

γµ

]
,

so that C0(Γ ) = C2(Γ )m−R̄(Γ ; 0). Similar conditions de-
termine C3(Γ ) for a vacuum polarization diagram. Many
other renormalization conditions are possible, such as min-
imal subtraction or mass shell renormalization [2,12].

8.3 Ward identities and counterterms

Now, if we take a self-energy diagram Γ and enumerate
the electron lines of Γ from 1 to n, we can consider the
reduced vertex diagrams Γj (for j = 1, . . . , n) obtained by
inserting a photon line in the jth electron line of Γ .

For instance, if Γ=� , then n = 3 and

Γ1 = , Γ2 =! , Γ3 =" .

The bare and renormalized value of Γj will be denoted
U(Γj ; q;λ, p) and R(Γj ; q;λ, p). If the electron line j be-
longs to an electron loop, then U(Γj ; q;λ, p) = 0 and
R(Γj ; q;λ, p) = 0 by Furry’s theorem. According to the
Ward identity ([62] p. 243) for bare and renormalized val-
ues

∂U(Γ ; q)
∂qµ

= −
∑
j

U(Γj ; q;µ, 0),

∂R(Γ ; q)
∂qµ

= −
∑
j

R(Γj ; q;µ, 0).

Moreover, it can be shown that

∂R̄(Γ ; q)
∂qµ

= −
∑
j

R̄(Γj ; q;µ, 0).

Therefore, using (71), combined with the derivative of
(68) with respect to qµ and the Ward identities, we obtain

C2(Γ ) = −
∑
j

C1(Γj). (72)

When we renormalize a given diagram Γ , we often
have a reduced vertex subdiagram γj corresponding to
a self-energy diagram γ (in other words, γj is obtained
by branching a photon line on the jth electron line of γ).
But, generally, all the γj (obtained by branching a photon
line on all the electron lines of γ) are not subdiagrams of
Γ . Because of this, we cannot use (72), and the cancella-
tions coming from (72) are obtained when all the Feyn-
man diagrams are summed. This is what we mean when
we say that the renormalization of a Feynman diagram is
not compatible with Z1 = Z2.

Consider for instance the example of the renormaliza-

tion of# treated in Sect. 8.1. Among the counter

terms, we have Γ1(1) and Γ3(1) as factors of ⊗$ , but not

Γ2(1). Because of this, we cannot use (72) to eliminate the
counterterms C1(Γi) in the renormalization of Γ . When
the C1 counterterms cannot be eliminated, we say that the
renormalization scheme is not compatible with Z1 = Z2.

The trees represent a sum of Feynman diagrams, and
we first thought that the renormalization of trees was com-
patible with Z1 = Z2. This is true for all trees up to order
3 (i.e. to e6). However, we discovered a tree of order 6
(e12) which is not compatible with Z1 = Z2, confirming
the reputation of perversity of the renormalization theory.

In the next sections, we shall give sums of Feynman
diagrams which are compatible with Z1 = Z2 (i.e. all C1
counterterms are eliminated). But first, we need the re-
lation between the renormalization factors and the coun-
terterms. This relation was given by Dyson [15] and in
the early books on quantum field theory (e.g. [63]). In our
notation, this relation is

Z1 = 1 +
∑

Γj=
b b
b

e|Γj |−1C1(Γj), (73)

Z2 = 1 −
∑

Γ= b b

e|Γ |C2(Γ ), (74)

Z3 = 1 −
∑

Γ= b b

e|Γ |C3(Γ ), (75)

Z2δm =
∑

Γ= b b

e|Γ |C0(Γ ). (76)

We saw that the each tree t can be considered as a sum
of Feynman diagrams. Let t(Γ ) be the unique tree where
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Γ appears. According to our definitions of the self-energy
and vacuum polarization, we have for the self-energy

t = −
∑

t(Γ )=t

Γ,

where Γ are self-energy diagrams and for the vacuum po-
larization

t =
∑

t(Γ )=t

Γ,

where Γ are vacuum polarization diagrams. Therefore, the
relation between renormalization factors and trees is

Z2 = 1 +
∑
|t|>0

e2|t|ζ2(t),

δm =
∑
|t|>0

e2|t|ζm(t),

Z3 = 1 −
∑
|t|>0

e2|t|ζ3(t).

The relation between ζi and counterterms is

ζ2(t) = −
∑

t(Γ )=t

C2(Γ ),

ζ3(t) =
∑

t(Γ )=t

C3(Γ ),

ζm(t) =
∑

t(Γ )=t

C0(Γ ) − (ζm.̄ζ2)(t).

9 Total number of loops

The simplest way to obtain finite results from our expan-
sion over trees is to sum over all trees of order ;, i.e. over
all diagrams with 2; vertices. For instance, we can define

ϕ0
λµ(;; q) =

∑
|t|= 

ϕ0
λµ(t; q),

ψ0
λµ(;; q) =

∑
|t|= 

ψ0
λµ(t; q),

ϕ0(;; q) =
∑
|t|= 

ϕ0(t; q),

ψ0(;; q) =
∑
|t|= 

ψ0(t; q),

with similar definitions for the renormalized quantities.
According to this definition, the photon propagator, vac-
uum polarization, electron propagator and self-energy are

Dλµ(q) = D0
λµ(q) +

∑
 >0

e2 0 ϕ
0
λµ(;; q),

Πλµ(q) =
∑
 >0

e2 0 ψ
0
λµ(;; q),

S(q) = S0(q) +
∑
 >0

e2 0 ϕ
0(;; q),

Σ(q) = −
∑
 >0

e2 0 ψ
0(;; q),

with similar relations for the renormalized quantities.
The sum of all trees of order ; is also a sum of all Feyn-

man diagrams with ; loops. For instance, ψ0(;, q) is the
sum of all the self-energy diagrams with 2; vertices. It was
proved that QED is renormalizable order by order [2], and
that it is compatible with the identity Z1 = Z2. In other
words, the Dyson equation Z2S̄(q; e) = S(q; e0/(Z

1/2
3 ))

gives S̄(q; e) as a series over e, where each term is finite.
Since this identity is the only thing that we used to define
our renormalization, ϕ̄0(;; q) is the term of order 2; in the
series defining S̄(q; e). Therefore, ϕ̄0(;; q) is finite, and the
same is true for ψ̄0(;; q), ϕ̄0

λµ(;; q) and ψ̄0
λµ(;; q).

The results that were obtained for trees can now be
translated into the loop order approach by summing over
all trees of a given order. For instance, the pruning oper-
ator becomes

P (;) =
∑
|t|= 

P (t) =
 −1∑
m=1

m⊗ (;−m).

Notice that this coproduct is the dual of the product of
series. Thus, it is co-commutative. From this definition we
obtain the reduced and full convolutions

(ϕ.̄ψ)(;) =
 −1∑
m=1

ϕ(m) ⊗ ψ(;−m),

(ϕ . ψ)(;) =
 ∑

m=0

ϕ(m) ⊗ ψ(;−m).

The antipode becomes SP (0) = 0 and

SP (;) = −;−
 −1∑
m=1

SP (m)(;−m).

We also define

Z2, =
∑
|t|= 

ζ2(t),

Z3, =
∑
|t|= 

ζ3(t),

Zm, =
∑
|t|= 

ζm(t),

so that Z2 =
∑

 e
2 Z2, , etc. Notice that Z2,0 = Z3,0 = 1

and Zm,0 = 0.

9.1 Recursive relations

By summing the recursive equations for planar binary
trees, we obtain recursive equations for the 2;th order
terms of the bare and renormalized propagators. These
recursive equations decrease the combinatorial explosion
of Feynman diagrams. The number of integrals to carry
out at ; loops increases with the exponential of ; if all
Feynman diagrams are calculated, whereas it increases as
a polynomial in ; with the recursive expressions.
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The case of massless QED is obtained from the recur-
sive equations by setting m = 0 and all Zm, = 0.

Using the notation of Sect. 4.4 we can write a recursive
relation for the electron propagator.

ϕn(;; q; {λ, p}1,n) = S0(q)γλ1ϕn−1(;; q + p1; {λ, p}2,n)

+i
 −1∑
m=0

n∑
k=0

∫
d4p

(2π)4
S0(q)γλϕk

λλ′(m; p; {λ, p}1,k)

×ϕn−k+1
Σ (;−m− 1; q − p;λ′, p+ Pk, {λ, p}k+1,n),

(77)

The initial data for ; = 0 are ϕn(0; q) = ϕn( ; q) and
ϕn
λµ(0; q) = ϕn

λµ( ; q).
For the photon propagator,

ϕn
µν(;; q; {λ, p}1,n) = −i

 −1∑
m=0

n∑
k=0

∫
d4p

(2π)4
D0

µλ(q)

×tr
[
γλϕk+1

Σ (m; p;λ′,−q − Pk, {λ, p}1,k)
]

×ϕn−k
λ′ν (;−m− 1; q + Pk; {λ, p}k+1,n). (78)

For the vacuum polarization, we have similarly

ψnµν(;; q; {λ, p}1,n) = −i
∫

d4p

(2π)4
(79)

×tr
[
γµϕn+1

Σ (;− 1; p; ν,−q − Pn, {λ, p}1,n)
]
.

The same kind of relations can be obtained for the
renormalized quantities. We list here just a few of them
for the renormalized electron propagator:

ϕ̄0(;; q) = SP (Z2, )S0(q) +
 ∑

p=1

Zm,pS
0(q)ϕ̄0(;− p; q)

+ i
 −1∑
m=0

n∑
k=0

∫
d4p

(2π)4
S0(q)γλ

× ϕ̄0
λλ′(m; p)ϕ̄1(;−m− 1; q − p;λ′, p).

and the renormalized vacuum polarization

ψ̄0
µν(;; q) = Z3, ψ

0
µν(0; q)

−i
 −1∑
m=0

∫
d4p

(2π)4
tr
[
γµϕ̄1(;−m− 1; p; ν,−q)]Z2,m.

In the case of massless QED, the Hopf algebra of renor-
malization at the loop order will be studied in detail in a
forthcoming publication [64].

10 Number of electron and photon loops

In the previous section, we showed that renormalization
and Z1 = Z2 are compatible if all the diagrams with a
given number of loops are summed. In the present section,

we see that this property still holds if we sum all diagrams
having a given number of electron and photon loops.

The expansion over photon and electron loops is not as
compact as that over the total number of loops, but it is
interesting because, in certain systems, a good approxima-
tion is achieved by restricting the number of vacuum po-
larization insertions. The extreme case is quenched QED
for which no such insertion is possible (with our notation,
quenched QED is made of the terms (;γ , 0) for the elec-
tron propagator and (;γ , 1) for the photon propagator).
The expansion over photon and electron loops can also be
used in dimensional regularization, when the photon and
electron is renormalized at two different scales µ and µ′,
as suggested by Kızılersü and collaborators [66].

For a given diagram Γ , let Lγ(Γ ) be the number of
photon loops and Le(Γ ) the number of electron loops of
Γ . These numbers can be counted as follows: you remove
all photon lines from Γ and you count N , the number
of connected components of the remaining graph. If Γ is
a photon propagator or a vacuum polarization diagram,
then Le(Γ ) = N , and Lγ(Γ ) = V/2 − Le(Γ ), where V is
the number of vertices of Γ . If Γ is an electron propagator
or a self-energy diagram, then the connected components
are an electron line (called the baseline of Γ ) and N − 1
electron loops, so that Le(Γ ) = N − 1, and Lγ(Γ ) =
V/2 − Le(Γ ).

For the expansion over trees we have a similar defini-
tion. If t is an electron tree, then Lγ(t) is the number of
branches of t pointing to the left, and Le(t) = |t| − Lγ(t).
If t is a photon tree, then Le(t) is the number of branches
of t pointing to the right and Lγ(t) = |t| − Le(t).

Therefore, to each Feynman diagram or tree we can
associate a pair of integers (;γ , ;e), where ;γ is the num-
ber of photon loops and ;e the number of electron loops.
The corresponding map is denoted L (i.e. (;γ , ;e) = L(Γ )
or (;γ , ;e) = L(t)). Inversely, we write L = (;γ , ;e) to des-
ignate the sum of all self-energy or vacuum polarization
diagrams or trees with ;γ photon loops and ;e electron
loops.

For the electron propagator or self-energy we have

(0, 0) = ,

(1, 0) = ,

(1, 1) = ,

(2, 0) = ,

(1, 2) = ,

(2, 1) = + + ,

(3, 0) = .

The reader can check this correspondence by counting the
number of electron and photon loops in Sect. C.2.
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For the photon propagator we have

(0, 0) = ,

(0, 1) = ,

(0, 2) = ,

(1, 1) = ,

(0, 3) = ,

(1, 2) = + + ,

(2, 1) = .

The reader can check this correspondence by counting the
number of electron and photon loops in Sect. C.3.

By considering the definition of the Connes–Kreimer
coproduct, it can be seen that ∆CK is compatible with
this bigrading. For example, if γ⊗Γ/γ is a term of ∆CKΓ ,
then

Le(Γ ) = Le(γ) + Le(Γ/γ),
Lγ(Γ ) = Lγ(γ) + Lγ(Γ/γ).

A formal way to use this bigrading is to expand all
quantities over L.

ϕ0
λµ(L; q) =

∑
L(t)=L

ϕ0
λµ(t; q),

ψ0
λµ(L; q) =

∑
L(t)=L

ψ0
λµ(t; q),

ϕ0(L; q) =
∑

L(t)=L

ϕ0(t; q),

ψ0(L; q) =
∑

L(t)=L

ψ0(t; q).

Because of the definition of L(t), ϕ0(L; q) and ψ0(L; q)
are zero if ;γ = 0 and ;e �= 0. For the photon propaga-
tor, ϕ0

λµ(L; q) = 0 is ;e = 0 and ;γ �= 0. Furthermore,
ϕ0
λµ(0, ;e; q) is a reducible photon diagram (a string of

bubbles). Thus, ψ0
λµ(0, ;e; q) is also zero when ;e > 1.

Therefore, the vacuum polarization and self-energy are

Πλµ(q) = e20ψ
0
λµ(0, 1; q)

+
∑

 γ>0, e>0

e
2 γ+2 e

0 ψ0
λµ(;γ , ;e; q),

Σ(q) = −
∑

 γ>0, e≥0

e
2 γ+2 e

0 ψ0(;γ , ;e; q).

The photon and electron Green functions are

Dλµ(q) = D0
λµ(q) +

∑
 γ≥0, e>0

e
2 γ+2 e

0 ϕ0
λµ(;γ , ;e; q),

S(q) = S0(q) +
∑

 γ>0, e≥0

e
2 γ+2 e

0 ϕ0(;γ , ;e; q),

with similar expressions for the renormalized quantities.

We also have an expansion of the renormalization fac-
tors:

Z2,L =
∑

L(t)=L

ζ2(t),

Z3,L =
∑

L(t)=L

ζ3(t),

Zm,L =
∑

L(t)=L

ζm(t).

The counterterms are determined by Σ(q) and Π(q). Thus,
the non-zero terms of Zi,L are determined from the non-
zero terms of ψ0(L; q) and ψ0

λµ(L; q). This gives us

Z2 = 1 +
∑

 γ>0, e≥0

e2 γ+2 eZ2, γ , e ,

Z3 = 1 − e2Z3,0,1 −
∑

 γ>0, e>0

e2 γ+2 eZ3, γ , e ,

δm =
∑

 γ>0, e≥0

e2 γ+2 eZm, γ , e
.

The coproduct ∆P is now defined by

∆P (;γ , ;e) =
 γ∑

mγ=0

 e∑
me=0

(mγ ,me) ⊗ (;γ −mγ , ;e −me).

This coproduct is co-commutative. The pruning operator
becomes

P (L) = ∆PL− (0, 0) ⊗ L− L⊗ (0, 0).

From these coproducts we derive the convolution ., the
reduced convolution .̄ and the antipode SP . The unit of
the algebra is (0,0).

10.1 Recursive relations

As for the case of the total number of loops, the recur-
sive equations are obtained by summing the relations of
Sect. 4.4 over the appropriate trees. For notational con-
venience we consider the first component, n = 0.

For the electron propagator (38) becomes

ϕ0(;γ + 1, ;e; q) = i
 γ∑

mγ=0

 e∑
me=0

∫
d4p

(2π)4
S0(q)γλ

×ϕ0
λλ′(mγ ,me; p)ϕ1(;γ −mγ , ;e −me; q − p;λ′, p).

In this sum, we know that ϕ0
λλ′(mγ ,me; p) = 0 if me = 0

and mγ �= 0, and ϕ1(;γ −mγ , ;e −me; q − p;λ′, p) = 0 if
mγ = ;γ and me �= ;e.

The initial data for L = (0, 0) are ϕn(0, 0; q) = ϕn( ; q)
and ϕn

λµ(0, 0; q) = ϕn
λµ( ; q).
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For the photon propagator (40) becomes

ϕ0
µν(;γ , ;e + 1; q) = −i

 γ∑
mγ=0

 e∑
me=0

∫
d4p

(2π)4
D0

µλ(q)

×tr
[
γλϕ1(;γ −mγ , ;e −me; p;λ′,−q)]

×ϕ0
λ′ν(mγ ,me; q),

For the vacuum polarization, we have similarly

ψ0µν(;γ , ;e + 1; q)

= −i
∫

d4p

(2π)4
tr
[
γµϕ1(;γ , ;e; p; ν,−q)

]
.

The renormalized electron propagator is

ϕ̄0(L; q) = SP (Z2,L)S0(q) + Zm,LS
0(q)2

+S0(q)(Zm.̄ϕ̄
0(q))(L)

+i
 γ−1∑
mγ=0

 e∑
me=0

∫
d4p

(2π)4
S0(q)γλ

×ϕ̄0
λλ′(mγ ,me; p)

×ϕ̄1(;γ −mγ − 1, ;e −me; q − p;λ′, p),

and the renormalized vacuum polarization

ψ̄0
µν(L; q) = Z3,Lψ

0
µν(0; q) − i

 γ∑
mγ=0

 e−1∑
me=0

∫
d4p

(2π)4

×tr
[
γµϕ̄1(;γ −mγ , ;e −me − 1; p; ν,−q)]Z2,mγ ,me .

10.2 Finiteness

If we follow the argument leading to the recursive equa-
tions for the expansion over trees, and we substitute elec-
tron and photon loops to trees, we see that these equations
are uniquely determined by the Dyson relations

Z3(x, y,m)D̄(q;x, y,m) = D(q;x0, y0,m0), (80)
Z2(x, y,m)S̄(q;x, y,m) = S(q;x0, y0,m0), (81)

where

Z2 = 1 +
∑

 γ>0, e≥0

x2 γy2 eZ2, γ , e ,

Z3 = 1 − y2Z3,0,1 −
∑

 γ>0, e>0

x2 γy2 eZ3, γ , e
,

δm =
∑

 γ>0, e≥0

x2 γy2 eZm, γ , e ,

m0 = m+ δm,

Dλµ(q) = D0
λµ(q) +

∑
 γ≥0, e>0

x
2 γ

0 y2 e
0 ϕ0

λµ(;γ , ;e; q),

S(q) = S0(q) +
∑

 γ>0, e≥0

x
2 γ

0 y2 e
0 ϕ0(;γ , ;e; q),

D̄λµ(q) = D0
λµ(q) +

∑
 γ≥0, e>0

x2 γy2 e ϕ̄0
λµ(;γ , ;e; q),

S̄(q) = S0(q) +
∑

 γ>0, e≥0

x2 γy2 e ϕ̄0(;γ , ;e; q),

and

x0 = x/
√
Z3(x, y,m), (82)

y0 = y/
√
Z3(x, y,m). (83)

In practice, x0 = y0 = e0 and x = y = e, but these
series enable us to keep track of the number of photon
and electron loops.

To show that these equations give finite results, we
have to prove that they are obtained from the standard
Dyson equations for the renormalization of QED Feynman
diagrams. More precisely, we use the Dyson equations for
the inverse of D(q) and S(q):

qλqµ − q2gλµ − ξqλqµ − Π̄ ′
λµ(q)

= Z3(e,m)(qλqµ − q2gλµ − ξ0qλqµ −Πλµ(q)),

γ · q −m− Σ̄(q) = Z2(e,m)(γ · q −m− δm−Σ(q)),

with

e0 =
Z1e

Z2
√
Z3
. (84)

In these equations, Π̄ ′
λµ(q) is given by (70), Z1, Z2, Z3

and δm are given by (73), (74), (75) and (76), and finally
Σ̄(q) is

Σ̄(q) =
∑

Γ= b b

e|Γ |R(Γ ; q). (85)

The full proof requires the tools developed in [64], but
we can indicate here its basic ingredients. The first prop-
erty is that each Feynman diagram has a specific number
of photon and electron loops, and that the product of two
Feynman diagrams correspond to the sum of its photon
and electron loops. Therefore, any term in the perturba-
tive expansion of the Dyson equations has a well-defined
number of photon and electron loops. The second property
is that, for a given self-energy diagram Γ , all the reduced
vertex diagrams Γj (deduced from Γ by inserting a photon
dangling bond on each of its electron lines) have the same
number of photon and electron loops as Γ . Finally, when
all the terms corresponding to a given number of photon
and electron loops are summed, all the Γj of a given Γ
are present in the sum, and the term Γ will also belong
to the sum to compensate for the Γj by (72). The last
point is the main difference with the tree expansion, and
it ensures that Z1 is not required in the Dyson equations
(80) and (81).

We can illustrate the last statement with an example.
From the definition of Z1 and Z2 given in (73) and (74)
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we can write

Z1

Z2
=


1 +

∑
γj

e|γj |−1C1(γj)




×

1 +

∞∑
n=1

∑
γ1...γn

C2(γ1) · · ·C2(γn)


 ,

where γj are reduced vertex diagrams and γ1, . . . , γn are
self-energy diagrams. In the right-hand side, we want to
determine the term tL with ;γ photon loops and ;e elec-
tron loops, so that L = (;γ , ;e), and we want L �= (0, 0).
This term is given by

tL =
 γ∑

n=1

∑
L(γ1)+···L(γn)=L

C2(γ1) · · ·C2(γn)

+
∑

L(γj)=L

C1(γj)

+
∑

L(γj)+L(γ2)+···L(γn)=L

C1(γj)C2(γ2) · · ·C2(γn).

In the last sum n ≥ 2. Now the argument runs as follows:
if one γj belongs to the last sum, then all γj coming from
the same γ belong to it, because they have the same num-
ber of photon and electron loops; moreover, this γ is one
of the γ1 of the first sum, since γ has the same number of
loops as γj . On the other hands, for each γ1 in the first
sum, all the γj corresponding to it belong to the second
sum. Therefore, (72) can be used and we obtain tL = 0.
The same argument shows that all C1(γj) are eliminated
from terms with a given number of electron and photon
loops in e2n0 . Hence, all C1(γj) disappear from the Dyson
equation expanded over electron and photon loops. Count-
ing the number of electron and photon loops amounts to
introducing two variables x and y instead of one charge.

To summarize, we started from the Dyson equation
expanded over diagrams, which contains only finite renor-
malized quantities, and we summed over all diagrams con-
taining a given number of photon and electron loops. This
sum gives again finite renormalized quantities and elimi-
nates all C1 counterterms. The absence of C1 counterterms
amounts to the use of Z1 = Z2 in the Dyson equation ex-
panded over loops, and the expansion over loops amounts
to the use of two charges x and y. Thus, the Dyson equa-
tion involving finite quantities gives exactly (81) and (80)
with renormalized “charges” given by (82) and (83). Since
the recursive equations determined the unique solution of
these equations, we conclude that the recursive equations
determine finite renormalized quantities.

11 Hopf algebra for massless QED

In this section, we determine a coproduct from the re-
cursive equations (57), (63) and (65) and the product law
(64) for massless QED. The case of massless QED is much

simpler because the mass is not renormalized. Thus, for
all trees t, ζm(t) = 0.

This coproduct determines the renormalized propaga-
tors as a function of the unrenormalized ones. In this sec-
tion, it will be useful to distinguish the electron and pho-
ton trees by the color of the root. A tree with a black root
is written t• and represents an electron propagator, a tree
with a white root is written t◦ and represents a photon
propagator. In a tree tl ∨ tr, tl is white and tr is black.
There are now two graftings operators b and bc , so that
tl b tr is a black tree and tl bc tr a white one.

Using a variation of Sweedler’s notation, we write

∆t◦ =
∑
∆t◦
t◦(1) ⊗ t◦(2), (86)

∆t• =
∑
∆t•
t◦(1)t

•
(1) ⊗ t•(2), (87)

F (t•) =
∑
F (t•)

t◦(1) ⊗ t•(2). (88)

These equations mean that the coproduct of t◦ generates a
sum of tensor products with one white tree on the left and
one white tree on the right, the coproduct of t• generates a
sum of tensor products with one black tree and one white
tree on the left and one black tree on the right; finally the
coproduct3 F (t) generates a sum of tensor products with
one white tree on the left and one black tree on the right.
These trees can eventually be the root, which is the unit
element of the algebra (the root is neither white nor black,
or both, as you wish).

To avoid products of white trees in (86), (87) and (88),
we took advantage of the fact that, according to (31), the
ϕµν of a white tree tl bc tr can be written as a product
of ϕµν( bc tr) by ϕµν(tl). From (64), we also know that
this property is compatible with renormalization. There-
fore, we translate this property into an inner product over
white trees. The product of two white trees s◦t◦ is defined
recursively by (sl bc sr)t = (slt) bc sr and t = t. In partic-
ular ( bc s)t = t bc s, which is what we need. Surprisingly,
this product (called “over”) has been discovered by Lo-
day and Ronco in a completely different context [67]. The
product is related to the product of photon diagrams by
the expression

ϕλµ(t bc s) = ϕλµ(( bc s)t)

= ϕλν( bc s)[D0]−1νν
′
ϕν′ν(t).

The coproduct ∆ acting on white and black trees is
defined by the recursive equations

3 More precisely, F is a coaction.
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∆( bc t) = ( bc t) ⊗
+
∑
F (t)

t◦(1) ⊗ ( bc t•(2)), (89)

∆(tl b tr) = (tl b tr) ⊗ +
∑

∆tl,∆tr

(t◦l(1)t
◦
r(1))t

•
r(1)

⊗ (t◦l(2) b t•r(2)), (90)

F (tl b tr) =
∑

∆tl,F (tr)

(t◦r(1)t
◦
l(1)) ⊗ (t◦l(2) b t•r(2)), (91)

with the initial values ∆ = ⊗ and F ( ) = ⊗ ,
and with the compatibility of the “over” product with
renormalization: ∆(s◦t◦) = ∆s◦∆t◦. In particular,

∆tl bc tr = ∆( bc tr)∆tl.

With this notation, we can now write the coproduct of
a general white tree

∆(tl bc tr) =
∑
∆tl

(t◦l(1) bc tr) ⊗ t◦l(2)

+
∑

∆tl,F (tr)

(t◦r(1)t
◦
l(1)) ⊗ (t◦l(2) bc t•r(2)). (92)

These preliminaries enable us to write the relation be-
tween renormalized and unrenormalized propagators as

ϕ̄0
µν(t

◦; q) =
∑
∆t◦
ζ(t◦(1))ϕ

0
µν(t

◦
(2); q), (93)

ϕ̄0(t•; q) =
∑
∆t•
ζ(t◦(1))ζ(t

•
(1))ϕ

0(t•(2); q), (94)

f̄(t; q) =
∑
∆t•
ζ(t◦(1))f

0(t•(2)). (95)

The general counterterm ζ is a scalar over black and
white trees defined by ζ( ) = 1 and

ζ(t•) = ρ(t•), (96)
ζ(s◦t◦) = ζ(s◦)ζ(t◦),
ζ( bc t) = ζ3( ∨ t).

In particular ζ(tl bc tr) = ζ3( ∨ tr)ζ(tl). We recall that
ρ(t) = ζ2 ◦ SP (t). Equations (93) and (94) are given in
expanded form in Appendix 2 for trees up to order 3.

We prove this recursively. From the list of Appendix 2,
(93) and (94) are satisfied for all trees up to order 3. The
same can be checked for (95). Assume that they are sat-
isfied up for trees with 2N − 1 vertices. Take a tree with
2N + 1 vertices. Take first bc t, then use (95) for f̄1 in
(65). This yields

ϕ̄0
µν( ∨ t; q) = ζ3( ∨ t)ϕT

µν( ; q)

+
∑
F (t)

ζ(t(1))ϕ0
µν( ∨ t(2)).

This is (93) for the coproduct defined by (89). If we take
now tl bc tr, where tl and tr have less than 2N +1 vertices,

we can expand ϕ̄0
µν( ∨tr) and ϕ̄0

µν(tl) over unrenormalized
terms. Then, using (64) we find

ϕ̄0
µν(tl ∨ tr; q)
=
(
ζ3( ∨ tr)ϕT

µν( ; q)

+
∑
F (tr)

ζ(tr(1))ϕ0
µν( ∨ tr(2); q)

)

×
∑
∆tl

ζ(tl(1))ϕ̄0
µν(tl(2); q)

=
∑
∆tl

ζ(tl(1) bc tr)ϕ̄0
µν(tl(2); q)

+
∑

F (tr)∆tl

ζ(tr(1)tl(1))ϕ̄0
µν(tl(2) ∨ tr(2); q).

This is (93) with the coproduct defined in (92) and the
correct ζ.

For the coproduct acting on electron trees, we start
from the recursive equation (57) and we use the expansion
(93) for ϕ̄0

µν(tl; q) and (94) for ϕ̄0(tr; q). This gives us

ϕ̄0(tr ∨ tl; q) = ρ(tl ∨ tr)ϕ0( ; q)

+
∑

F (tr)∆tl

ζ(tl(1)t◦r(1))ζ(t
•
r(1))ϕ̄

0(tl(2) ∨ tr(2); q).

The first term ρ(tl ∨ tr) is consistent with ζ(tl ∨ tr) as
defined in (96). And the other terms are consistent with
(94) using the coproduct (90).

Exactly the same substitution leads to (95) using the
coproduct (91).

In [64], it will be shown that ∆ is co-associative and
defines a Hopf algebra over the two-colored planar binary
trees.

12 Conclusion

The method of Schwinger equations has a number of ad-
vantages: operator–valued distributions are avoided, as
well as indefinite norms and many of the mathematically
difficult concepts of quantum field theory. The methods
of planar binary trees lead to recursive equations which,
when summed over certain classes of trees, give recursive
equations for finite renormalized quantities.

For massless QED, a Hopf algebra was explicitly de-
fined. When all the trees of a given order ; are summed,
we obtain a Hopf algebra over ; (see [64]):

∆; =
∑
|t|= 

∆t.

This Hopf algebra over ; determines the renormalized (fi-
nite) quantities as a sum of divergent bare quantities mul-
tiplied by counterterms. For instance,

ϕ̄0
µν(;; q) =

∑
∆ 

ζ(;(1))ϕ0
µν(;(2); q).
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Since the counterterms do not depend on the external
field, these renormalization formulas are valid for all com-
ponents:

ϕ̄n
µν(;; q; {λ, p}1,n) =

∑
∆ 

ζ(;(1))ϕn
µν(;

◦
(2); q; {λ, p}1,n),

so that an infinite number of components are renormalized
in one stroke.

As far as the recent and fascinating results by Connes
and Kreimer [9,10] are concerned, our Hopf algebra yields
a noncommutative analogue of some of their results. The
study of this noncommutative Hopf algebra will be pre-
sented in detail in a forthcoming publication [64]. Finally,
the noncommutative Hopf algebra of massive QED will be
described in [65].
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A Appendix 1

This appendix contains some proofs.

A.1 Proof of (44) (the pruning operator is
co-associative)

If t = we have P ( ) = 0, so the identity (44) holds. So,
suppose that t �= . The reason why the identity (44) holds
for t is that applying the recursive definition of P , on the
successive right grafters of t, at each step both sides of (44)
coincide on the terms which do not involve P (t′) for the
last right grafter t′ considered. Of course, when we finally
meet a right grafter t′ such that P (t′) = 0 we obtain the
equality (44). We develop this idea formally.

Any tree t �= can be written in a unique way as

t = t1 ∨ (t2 ∨ (... ∨ (tn ∨ )...)),

for some n ≤ |t| + 1. In fact, it suffices to decompose the
tree t into its left and right grafting trees, then to decom-
pose successively the right trees as graftings of two new
trees and pick up all their left sides, t1 := tl, t2 := (tr)l,
t3 := ((tr)r)l and so on, until we meet an undecomposable
right side (...((tr)r)...)r = . Since |t| = |t1| + |t2| + ... +
|tn| + n− 1 and |ti| ≥ 0 for all i = 1, ..., n, the procedure
must finish for an n ≤ |t| + 1.

Since P (tn ∨ ) = 0, we have

P (tn−1 ∨ (tn ∨ )) = tn−1 ∨ ⊗ tn ∨ ,

P (tn−2 ∨ (tn−1 ∨ (tn ∨ ))) = tn−2 ∨ ⊗ tn−1 ∨ (tn ∨ )
+tn−2 ∨ (tn−1 ∨ ) ⊗ tn ∨

and

P (tn−3 ∨ (tn−2 ∨ (tn−1 ∨ (tn ∨ ))))
= tn−3 ∨ ⊗ tn−2 ∨ (tn−1 ∨ (tn ∨ ))
+tn−3 ∨ (tn−2 ∨ ) ⊗ tn−1 ∨ (tn ∨ )
+tn−3 ∨ (tn−2 ∨ (tn−1 ∨ )) ⊗ tn ∨

Thus, for the tree t = t1 ∨ (t2 ∨ (...∨ (tn ∨ )...)), we obtain

P (t) =
n−1∑
i=1

t1 ∨ (t2 ∨ (... ∨ (ti ∨ )...))

⊗ ti+1 ∨ (ti+2 ∨ (... ∨ (tn ∨ )...)).

Hence

(P ⊗ id) ◦ P (t)

=
n−1∑
j=1

P (t1 ∨ (t2 ∨ (... ∨ (ti ∨ )...)))

⊗ti+1 ∨ (ti+2 ∨ (... ∨ (tn ∨ )...))

=
n−1∑
j=1

j−1∑
i=1

t1 ∨ (...(ti ∨ )...)

⊗ti+1 ∨ (...(tj ∨ )...) ⊗ tj+1 ∨ (...(tn ∨ )...)

=
∑

1≤i<j≤n−1

t1 ∨ (...(ti ∨ )...)

⊗ti+1 ∨ (...(tj ∨ )...) ⊗ tj+1 ∨ (...(tn ∨ )...),

and similarly

(id ⊗ P ) ◦ P (t)

=
n−1∑
k=1

t1 ∨ (t2 ∨ (... ∨ (tk ∨ )...))

⊗P (tk+1 ∨ (tk+2 ∨ (... ∨ (tn ∨ )...)))

=
n−1∑
k=1

n−1∑
l=k+1

t1 ∨ (...(tk ∨ )...)

⊗tk+1 ∨ (...(tl ∨ )...) ⊗ tl+1 ∨ (...(tn ∨ )...)

=
∑

1≤k<l≤n−1

t1(... ∨ (tk ∨ )...)

⊗tk+1 ∨ (...(tl ∨ )...) ⊗ tl+1 ∨ (...(tn ∨ )...).

Hence the identity (44) holds for any tree.

A.2 Proof of (32) and (7)

We use (31) to prove (32). We have
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Dµν(q) =
∑
t

e
2|t|
0 ϕ0

µν(t; q)

= ϕ0
µν( ; q) +

∑
t1t2

e
2|t1|+2|t2|+2
0 ϕ0

µν(t1 ∨ t2; q)

= ϕ0
µν( ; q) +

∑
t1t2

e
2|t1|+2|t2|+2
0 ϕ0

µλ( ∨ t2; q)

×ψ0λλ′
( ; q)ϕ0

λ′ν(t1; q)

= ϕ0
µν( ; q) +

∑
t2

e
2|t2|+2
0 ϕ0

µλ( ∨ t2; q)

×ψ0λλ′
( ; q)Dλ′ν(q).

We multiply the last equation by D−1(q) on the right
and by D0−1(q) on the left. This gives us

[D0−1
]µν(q) = [D−1]µν(q) +

∑
t2

e
2|t2|+2
0 [D0−1

]µλ(q)

× ϕ0λλ′
( ∨ t2; q)ψ0

λ′ν( ; q).

Since ϕ0λλ′
( ∨t2; q) is transverse, we can replace [D0−1]µλ

(q) by ψ0
µλ( ; q) in the above equation.

Using 30 and the definition of Πµν(q) given in (33) we
obtain

Πµν(q) =
∑
t2

e
2|t2|+2
0 ψ0

µλ( ; q)ϕ0λλ′
( ∨ t2; q)ψ0

λ′ν( ; q).

We can rewrite this last equation as

Πµν(q) =
∑
|t|>0

e
2|t|
0 ψ0

µν(t; q) =
∑
t

e
2|t|+2
0 ψ0

µν( ∨ t; q),

with ψ0µν(t1 ∨ t2; q) = 0 if t1 �= and

ψ0
µν( ∨ t; q) = ψ0

µλ( ; q)ϕ0λλ′
( ∨ t; q)ψ0

λ′ν( ; q).

(97)

Finally, we use (40) with t1 =

ϕ0
µν( ∨ t2; q) = −iD0

µλ(q)

×
∫

d4p

(2π)4
tr
[
γλϕ1(t2; p;λ′,−q)]D0

λ′ν(q).

We multiply this equation by D0−1(q) on the left and
on the right, and we use the fact that ϕ0

µν( ∨ t2; q) is
transverse to get, from (97), the relation

ψ0µν( ∨ t; q) = −i
∫

d4p

(2π)4
tr
[
γµϕ1(t; p; ν,−q)] .

If we sum over trees t, the last equation becomes

Πλµ(q) = −ie20

∫
d4p

(2π)4
tr
[
γλ

δS(p)
e0δA0

µ(−q)
]
.

A.3 Proof of (53)

From the definition (47) of the self-energy ψ, we use the
definition of the convolution ((42)) and of the pruning
operator ((43)) to write for a tree t = tl ∨ tr

−ψ0(t) = ψ0( )ϕ0(t)ψ0( ) + ψ0( )(ϕ0.̄ψ0)(t)
= ψ0( )ϕ0(t)ψ0( ) + ψ0( )ϕ0(tl ∨ )ψ0(tr)

+
n(tr)∑
i=1

ψ0( )ϕ0(tl ∨ ui)ψ0(vi),

where ui and vi are the trees obtained by pruning tr (i.e.
P (tr) =

∑
i ui ⊗ vi).

The last equation will be transformed by using the
recursive definition of ϕ0 for the trees t, tl ∨ and tl ∨ ui
given in (38).

Therefore, we obtain

ψ0(t; q) = −i
∫

d4p

(2π)4
γλϕ0

λλ′(tl; p)[
ϕ1(tr; q − p;λ′, p)

×ψ0( ; q) + ϕ1( ; q − p;λ′, p)ψ0(tr; q)

+
n(tr)∑
i=1

ϕ1(ui; q − p;λ′, p)ψ0(vi; q)
]
.

This can also be written

ψ0(t; q) = i
∫

d4p

(2π)4
γλϕ0

λλ′(tl; p)g(tr; q − p;λ′, p),

where

g(tr; q − p;λ′, p) = −ϕ1(tr; q − p;λ′, p)ψ0( ; q)
− (ϕ1(q − p;λ′, p).̄ψ0(q))(tr)
− ϕ1( ; q − p;λ′, p)ψ0(tr; q).

It will be useful to transform g(tr; q − p;λ′, p). To do
that, we rewrite the equation for ψ1(t; q;λ, p) given at the
end of Sect. 6.4 in [11], so that it gives

ϕ0( ; q)ψ1(t; q;λ, p)

= ϕ0( ; q)γλϕ0(t; q + p)ψ0( ; q + p)

+ϕ0(t; q)γλ − ϕ1(t; q;λ, p)ψ0( ; q + p)

+
n(t)∑
i=1

[
ϕ0( ; q)γλϕ0(ui; q + p)ψ0(vi; q + p)

−ϕ0(ui; q)ψ1(vi; q;λ, p)
−ϕ1(ui; q;λ, p)ψ0(vi; q + p)

]
.

Now, we replace ϕ0(t; q + p) by its value given from (48),
we add g(t; q;λ, p) on both sides and we reorder a bit:

g(t; q;λ, p) = ϕ0( ; q)ψ1(t; q;λ, p) − ϕ0(t; q)γλ

+ ϕ0( ; q)γλϕ0(t; q + p)ψ0( ; q + p)
− ϕ1( ; q;λ, p)ψ0( ; q + p)

+
n(t)∑
i=1

ϕ0(ui; q + p)ψ1(vi; q;λ, p).
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Finally, we note that ϕ1( ; q;λ, p) = ϕ0( ; q)γλϕ0(t; q+ p)
and we obtain

g(t; q;λ, p) = ϕ0( ; q)ψ1(t; q;λ, p)
+ ϕ0(t; q)ψ1( ; q;λ, p)

+
n(t)∑
i=1

ϕ0(ui; q)ψ1(vi; q;λ, p).

B Appendix 2

In this appendix, we collect the relation between bare and
renormalized photon and electron ϕ up to three loops.

B.1 Electron Green function for massless QED

B.1.1 One loop

ϕ̄( ) = ϕ( ) − ζ2( )ϕ( ).

B.1.2 Two loops

ϕ̄( ) = ϕ( )

+ ζ3( )ϕ( ) − ζ2( )ϕ( ),

ϕ̄( ) = ϕ( )

− ζ2( )ϕ( ) − ζ2( )ϕ( ) + ζ2( )2ϕ( ).

B.1.3 Three loops

ϕ̄( ) = ϕ( ) + 2ζ3( )ϕ( )

+ ζ3( )2ϕ( ) − ζ2( )ϕ( ),

ϕ̄( ) = ϕ( ) + ζ3( )ϕ( )

− ζ2( )ϕ( ),

ϕ̄( ) = ϕ( ) + ζ3( )ϕ( )

− ζ2( )ϕ( ) − ζ2( )ζ3( )ϕ( )

− ζ2( )ϕ( ) + ζ2( )ζ2( )ϕ( ),

ϕ̄( ) = ϕ( ) + ζ3( )ϕ( ) − ζ2( )ϕ( )

−ζ2( )ϕ( ) + ζ2( )ζ2( )ϕ( ),

ϕ̄( ) = ϕ( ) − ζ2( )ϕ( ) − ζ2( )ϕ( )

+ ζ2( )2ϕ( ) + [−ζ2( )

+ 2ζ2( )ζ2( ) − ζ2( )3]ϕ( ).

B.2 Photon Green function for massless QED

B.2.1 One loop

ϕ̄λµ( ) = ϕλµ( ) + ζ3( )ϕλµ( ).

B.2.2 Two loops

ϕ̄λµ( ) = ϕλµ( ) + 2ζ3( )ϕλµ( )

+ ζ3( )2ϕλµ( ),

ϕ̄λµ( ) = ϕλµ( ) + ζ3( )ϕλµ( ).

B.2.3 Three loops

ϕ̄λµ( ) = ϕλµ( ) + 3ζ3( )ϕλµ( )

+ 3ζ3( )2ϕλµ( ) + ζ3( )3ϕλµ( ),

ϕ̄λµ( ) = ϕλµ( ) + ζ3( )ϕλµ( )

+ ζ3( )ϕλµ( )

+ ζ3( )ζ3( )ϕλµ( ),

ϕ̄λµ( ) = ϕλµ( )

+ ζ3( )ϕλµ( )

+ ζ3( )ϕλµ( )

+ ζ3( )ζ3( )ϕλµ( ),

ϕ̄λµ( ) = ϕλµ( ) + ζ3( )ϕλµ( )

+ ζ3( )ϕλµ( ),

ϕ̄λµ( ) = ϕλµ( ) + ζ3( )ϕλµ( ).

B.3 Electron self-energy for massless QED

B.3.1 One loop

ψ̄( ) = ψ( ) + ζ2( )ψ( ).

B.3.2 Two loops

ψ̄( ) = ψ( ) + ζ3( )ψ( )

+ ζ2( )ψ( ),

ψ̄( ) = ψ( ) + ζ2( )ψ( )

+ ζ2( )ψ( ).

B.3.3 Three loops

ψ̄( ) = ψ( ) + 2ζ3( )ψ( )

+ ζ3( )2ψ( ) + ζ2( )ψ( ),

ψ̄( ) = ψ( ) + ζ3( )ψ( )

+ ζ2( )ψ( ),
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ψ̄( ) = ψ( ) + ζ3( )ψ( )

+ ζ2( )ψ( ) + ζ2( )ψ( ),

ψ̄( ) = ψ( )

+ ζ3( )ψ( ) + ζ2( )ψ( )

+ ζ2( )ψ( ) + ζ2( )ζ3( )ψ( ),

ψ̄( ) = ψ( ) + ζ2( )ψ( )

+ ζ2( )ψ( ) + ζ2( )ψ( ).

B.4 Vacuum polarization for massless QED

B.4.1 One loop

ψ̄λµ( ) = ψλµ( ) + ζ3( )ψλµ( ).

B.4.2 Two loops

ψ̄λµ( ) = 0,

ψ̄λµ( ) = ψλµ( ) + ζ3( )ψλµ( ).

B.4.3 Three loops

ψ̄λµ( ) = 0,

ψ̄λµ( ) = 0,

ψ̄λµ( ) = 0,

ψ̄λµ( ) = ψλµ( ) + ζ3( )ψλµ( )

+ ζ3( )ψλµ( ),

ψ̄λµ( ) = ψλµ( ) + ζ3( )ψλµ( ).

C Appendix 3: The first trees

This appendix gives the Feynman diagrams correspond-
ing to the first trees for the electron and photon Green
functions.

C.1 Recursive generation of Feynman diagrams

Let πe : Y → Fe be the morphism which associates a
sum of Feynman diagrams to each electron tree t, and
πγ : Y → Fγ the morphism which associates a sum of
Feynman diagrams to each photon tree t. In the following
sections, πe and πγ will be given for a few trees. An alter-
native method to generate all the Feynman diagrams of
the electron and photon propagators was given by Bach-
mann and collaborators [68].

We first give a recursive definition of πe ◦ ϕ0(t). As
an example, we start with tr = so that πe ◦ ϕ0(tr) =% .

The first step is to build πe ◦ ϕ1(tr) which is obtained
by branching a photon dangling bond to each of the free
electron lines of πe ◦ ϕ0(tr) and by summing the results.
For our example

πe ◦ ϕ1( ) =& +' +( .

Then, πe◦ϕ0(tl∨tr) is obtained by branching the pho-
ton propagator diagrams of πγ ◦ ϕ0

λµ(tl) to the dangling
bonds of πe ◦ ϕ1(tr) and connecting these photon propa-
gators to the first dot of the Feynman diagrams. Then the
results are multiplied on the left by a free electron line.

For our example tr = , the reader could take tl = to
build πe ◦ ϕ0( ) and take tl = to build πe ◦ ϕ0( ), and
check the results given in the following tables.

The recursive definition of πγ ◦ ϕ0
λµ(tl ∨ tr) is still

simpler. We also start from the diagrams generated by
πe◦ϕ1(tr); we close the two free electron lines on a new ver-
tex (on the left of the diagram), to which we branch a free
photon propagator, and the photon propagator πγ◦ϕ0

λµ(tl)
is connected to the photon dangling bond on the right
of the diagrams. Again, the reader can take tl = and
tl = to check the sum of Feynman diagrams given for
πγ ◦ ϕ0

λµ( ) and πγ ◦ ϕ0
λµ( ) in the following tables.

C.2 Electron Green function

For the electron Green functions, all electron loops are
oriented anticlockwise and the propagator is oriented from
right to left, as indicated in ϕ0( ). Notice that the last two
diagrams of ϕ0( ) are zero by Furry’s theorem. However,
they are useful to generate Feynman diagrams for higher
order trees. The Feynman diagrams of ψ0(t) for t �=
are obtained from those of ϕ0(t) by keeping only the 1PI
diagrams of ϕ0(t), removing the first and last free electron
lines, and by putting a minus sign in front of all diagrams.

ϕ0( ) =)
ϕ0( ) =*

ϕ0( ) =+ +,
+-

ϕ0( ) =.



Ch. Brouder, A. Frabetti: Renormalization of QED with planar binary trees 739

ϕ0( ) =/
ϕ0( ) =0 +1

+2
ϕ0( ) =3 +4

+5
ϕ0( ) =6 +7

+8 +9
+:

ϕ0( ) =; +<
+= +>
+? +@
+A +B
+C +D
+E +F
+G +H
+I

C.3 Photon Green function

For the photon Green functions, all electron loops are
oriented anticlockwise. This is only indicated explicitly
for ϕ0

λµ( ). The last two diagrams of ϕ0
λµ( ) are zero by

Furry’s theorem. However, they are useful to generate
Feynman diagrams for higher order trees. The Feynman
diagrams of ψ0

λµ(t) for t �= are obtained from those of
ϕ0
λµ(t) by keeping only the 1PI diagrams of ϕ0

λµ(t) and
removing the first and last free photon lines.

ϕ0
λµ( ) = J
ϕ0
λµ( ) =K

ϕ0
λµ( ) =L +M

+N
ϕ0
λµ( ) =O
ϕ0
λµ( ) =P

ϕ0
λµ( ) =Q +R

+S

ϕ0
λµ( ) =T +U

+V



740 Ch. Brouder, A. Frabetti: Renormalization of QED with planar binary trees

ϕ0
λµ( ) =W +X

+Y +Z
+[

ϕ0
λµ( ) =\ +] +^

+_ +` +a
+b +c +d
+e +f +g
+h +i +j

References

1. A.S. Wightman, In Renormalization Theory, edited by G.
Velo, A.S. Wightman (D. Reidel, Dordrecht 1976), pp. 1–
24,

2. C. Itzykson, J.-B. Zuber, Quantum field theory (McGraw-
Hill, New York 1980)

3. D. Anselmi, Ann. Phys. 276, 361 (1999)
4. R. Jackiw, In Mathematical Physics 2000, edited by A.

Fokas, A. Grigoryan, T. Kibble, B. Zegarlinski (Imperial
College Press, London 2000), hep-th/9911071

5. D. Kreimer, Adv. Th. Math. Phys. 2, 303 (1998)
6. D. Kreimer, Knots and Feynman diagrams (Cambridge

University Press, Cambridge 2000)
7. A. Connes, D. Kreimer, Commun. Math. Phys. 199, 203

(1998)
8. A. Connes, D. Kreimer, Lett. Math. Phys. 48, 85 (1999)
9. A. Connes, D. Kreimer, Commun. Math. Phys. 210, 249

(2000)

10. A. Connes, D. Kreimer, Commun. Math. Phys. 216, 215
(2001)

11. Ch. Brouder, Eur. Phy. J. C 12, 535 (2000)
12. J.C. Collins, Renormalization (Cambridge University

Press, Cambridge 1984)
13. L.M. Brown, Renormalization (Springer Verlag, New York

1993)
14. S.S. Schweber, QED and the men who made it (Princeton

University Press, Princeton 1994)
15. F.J. Dyson, Phys. Rev. 75, 1736 (1949)
16. A. Salam, Phys. Rev. 82, 217 (1951)
17. A. Salam, Phys. Rev. 84, 426 (1951)
18. N.N. Bogoljubow, O.S. Parasiuk, Acta Math. 97, 227

(1957)
19. K. Hepp, Commun. Math. Phys. 2, 301 (1966)
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prolongeables. Séminaire Schwartz 21, 1 (1960)

23. R. Estrada, Int. J. Math. Math. Sci. 21, 625 (1998)
24. D. Rivier, Helv. Phys. Acta 22, 265 (1949)
25. E.C.G. Stueckelberg, D. Rivier, Helv. Phys. Acta 23, 215

(1950)
26. E.C.G. Stueckelberg, T.A. Green, Helv. Phys. Acta 24,

153 (1951)
27. E.C.G. Stueckelberg, A. Peterman, Helv. Phys. Acta 26,

499 (1953)
28. N.N. Bogoliubov, D.W. Shirkov, Uzpekhi fiz. Nauk 57, 3

(1955) (in Russian)
29. N.N. Bogoljubow, D.W. Schirkow, Fort. d. Phys. 4, 438

(1956)
30. N.N. Bogoliubov, D.V. Shirkov, Introduction to the the-

ory of quantized fields (Interscience Pub. Inc., New York
1959)

31. H. Epstein, V. Glaser, Ann. Inst. Henri Poincaré 19, 211
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